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Abstract

In this thesis, I prove several results toward constructing a machine that turns Lagrangian
correspondences into A,-functors between Fukaya categories. The core of this construction
is pseudoholomorphic quilts with figure eight singularity.

In the first part, I propose a blueprint for constructing an algebraic object that binds
together the Fukaya categories of many different symplectic manifolds. I call this object the
"symplectic A,-2-category Symp". The key to defining the structure maps of Symp is the
figure eight bubble.

In the second part, I establish a collection of strip-width-independent elliptic estimates.
The key is function spaces which augment the Sobolev norm with another term, so that
the norm of a product can be bounded by the product of the norms in a manner which
is independent of the strip-width. Next, I prove a removable singularity theorem for the
figure eight singularity. Using the Gromov compactness theorem mentioned in the following
paragraph, I adapt an argument of Abbas-Hofer to uniformly bound the norm of the gradient
of the maps in cylindrical coordinates centered at the singularity. I conclude by proving a
"quilted" isoperimetric inequality.

In the third part, which is joint with Katrin Wehrheim, I use my collection of estimates
to prove a Gromov compactness theorem for quilts with a strip of (possibly non-constant)
width shrinking to zero. This features local C"-convergence away from the points where
energy concentrates. At such points, we produce a nonconstant quilted sphere.

Thesis Supervisor: Katrin Wehrheim
Title: Associate Professor, UC Berkeley
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Chapter 1

Introduction: A blueprint for Sym p

In [FlI], Floer proved the Arnol'd conjecture for a Lagrangian L in M assuming 7r2 (M, L) = 0,
a hypothesis which guarantees that "disk bubbling" is not a concern. Fukaya's innovation

was to embrace disks: in [Fu], he introduced the Fukaya A,-category, whose objects

are Lagrangians submanifolds (with some additional structures) and where the morphisms

from Lo to L' are formal sums of points in Lo n L1 in the case that these Lagrangians have

transverse intersection. The structure maps

Pd : hom(Ld-1, Ld) 9 ... 0 hom(LO, Ll) --+ hom(LO, Ld)

are defined by counting pseudoholomorphic maps from disks with d input and 1 output

boundary marked points to M and with boundary conditions in the Li's, as on the left of

Figure 1-1.
Figure eight bubbling arose in [WeWol] as a conjectural obstruction to an identity

of quilted Floer homology groups. In this thesis (parts of which are published in [Bol],

[BoWe2]), I follow Fukaya's example of embracing singularity formation and describe a

program to relate immersed Fukaya categories of different symplectic manifolds by counting

figure eight bubbles with seam marked points, one of which is pictured on the right of

Figure 1-1. The main goal of this program is to construct an A, 2-category Symp, whose

objects are compact symplectic manifolds and where the 1-morphisms from Mo to Mi are

given by Fuk(M(- x M1 ), the immersed Fukaya A, category of (Mo x M1, (-wmo) G wM,).

0X\1

122

L

X3 X2

C2 (y, I X2, XI)

Figure 1-1: On the left is one of the domains for the maps whose count defines p3, one of the

A0 structure maps in Fuk(M). On the right is a domain for a 2-patch eight with marked

points, whose count will define C 2 (y, I X2, X1 )-
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Symp will fulfill the goal of Wehrheim-Woodward's quilted Floer theory, which aims to
introduce functorial methods to the study of the Fukaya A,, category. 1.1 summarizes the
results proven in this thesis, which are proven in 2 and 3. In 1.2, I describe the proposed
structure maps of Symp and the relations they should satisfy; I note the places where the
results of 2 and 3 will be needed. In 1.3, I explain how Symp should unite several existing
constructions, and should yield new relations amongst them.

1.1 Results in 2 and 3

The novel feature of the figure eight bubble is the "singularity" where the seams intersect
tangentially, and one of the main results of my thesis is a Removal of Singularity Theorem
when LO, o L12 is cleanly immersed. The other main result is a Gromov Compactness
Theorem for strip-shrinking, a prototype of which is the degeneration where the two
seams of a figure eight bubble come together and fuse. Both results will be crucial for
constructing meaningful moduli spaces of figure eights.

1.1.1 Removal of singularity for figure eight bubbles

We say that Lagrangians Lo, C M6- x Mi and L1 2 c MT x M2 have cleanly immersed
composition if the intersection

LO, xM 1 L 12 = (Loi x L12) n (Mo x A M 1 x M2 )

is transverse (which implies that the "composition" LO, o L12 := 7ro2 (Loi XM1 L1 2) is an

immersed Lagrangian in M6- x M2 ) and furthermore any two local branches of LO, o L12

meet cleanly.

A figure eight bubble between L0 1 and L 12 is a tuple of finite energy pseudoholomorphic
maps

wo : R x (-oo, - ] -+ MO, w, : R x [-i, j] -+ Mi, w2 : R x [}, oo) - M2

satisfying the seam conditions

(wO(s, -i), wi(s, - )) E Lo1 , (wi(s, 1), w2(s, j)) E L 12  Vs E R.

By stereographic projection, the total domain of a figure eight bubble can be transformed to
a punctured sphere, similar to the illustration in Figure 1-1. In 2 I establish the following
basic analytic property of figure eight bubbles, which was conjectured in [WeWo4].

Removal of Singularity Theorem 2.1.2: If the composition LOi oL 12 is cleanly immersed,
then wo resp. w2 extend to continuous maps on D2 , (R x (-co, -]) U {oo} resp. D2
(R x [1, oc)) U {oo}, and wi(s, -) converges to constant paths as s -+ o.

The proof has two parts. First, I show that in cylindrical coordinates centered at the
singularity, the gradients are uniformly bounded. This goes by contradiction: if not, I
bubble off a nonconstant quilted sphere using Gromov Compactness Theorem 3.3.1. Second,
I establish an isoperimetric inequality for the energy in the quilted setting, which crucially
relies on the cleanness hypothesis. Since the argument is local at the singularity, the theorem
applies also to figure eight bubbles with marked points.

10
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Figure 1-2: The strip-shrinking degeneration and the tree of quilted spheres that results.

1.1.2 Gromov compactness for strip-shrinking

A phenomenon that is new to quilted Floer theory is strip-shrinking IWeWol], in which the

width of a strip or annulus in a quilted surface shrinks to zero. To understand the topology of

moduli spaces of maps from such domains, one would like a "Gromov Compactness Theorem":

if the energy (i.e. the summed L 2-norms of the derivatives) is bounded, then a subsequence

of the maps converges C' away from finitely many points where the gradient blows up, and

at each blowup point a tree of quilted spheres forms; Figure 1-2 illustrates this degeneration.

Wehrheim and Woodward [WeWoll established compactness up to energy concentration in

the special case of embedded composition of L01 o L12 (which in particular requires the

composed Lagrangian to be embedded, not immersed), though only in an H2 nW1'-topology

and with a lower bound on the energy concentration that has no geometric interpretation but

arises by contradiction from mean value inequalities. In joint work with Katrin Wehrheim

[BoWe2], we establish full COG-convergence in the most general natural case. Our current

proof produces a single quilted sphere - rather than a whole tree of spheres - at each

blowup point, hence may not capture all energy, but I have recently developed an argument

to fix this shortcoming. The results in this chapter will be stated for "immersed composition

of L0 1 o L 12 ", which is slightly weaker than cleanly-immersed composition.

A key for the proof is to establish "energy quantization" for figure eight bubbles, which

are the one new type of bubble that can form at the blowup points.

Lower Energy Bound Lemma 3.2.8: For fixed almost complex structures and La-

grangians with immersed composition Lo, o L 12 , the energy of nontrivial figure eight bubbles

is bounded below by a positive quantity.

Energy quantization plus the elliptic estimates discussed in the next subsection allow us to

establish the following theorem.

Gromov Compactness Theorem 3.3.1: Let Q" be a sequence of quilted surfaces con-

taining an annulus or strip Q' of widths 61 -+ 0. Label the patches of Q" with a fixed tuple

M of compact symplectic manifolds, let M, and M0 , M2 be the labels of Q' and the adja-

cent patches, and fix compatible almost complex structures over each patch. Fix compact

Lagrangian seam conditions for each seam of Q" so that the Lagrangian correspondences

Loi, L 12 associated to the seams of Q' have immersed composition L0 1 o L1 2 . Now suppose

11
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that (V")vEN : Q --+ M is a sequence of pseudoholomorphic quilts of bounded energy with
the given Lagrangian seam conditions.

Then there exists a subsequence that converges up to bubbling to a punctured quilt
0:Q'Z -+ (M'--M1 ). Here Q' is the quilted surface obtained as limit of the Q" by

replacing Q' with a seam labeled by LO, o L 12, Z is a finite set of bubbling points, 2'
satisfies seam conditions in the fixed Lagrangian correspondences and for the new seam in
Lo, o L1 2, and convergence holds in the following sense:

" The energy densities IdYI 2 are uniformly bounded on every compact subset of Q 0 %Z,
and at each point in Z there is energy concentration of at least h > 0;

* The quilt maps vV"Q| (Qvuz) on the complement of Z in the patches other than Q1
converge with all derivatives on every compact set to v'. If Lo, o L 12 is cleanly immersed,
then vv extends continuously to Z. If moreover L01 o L 12 C Mo x M2 is a smooth
submanifold, then this extension is smooth.

" At least one type of bubble forms at each point z E Z in the following sense: there is
a sequence of (tuples of) maps obtained by rescaling the maps defined on the various
patches near z, which converges C' to one of the following:

- a nonconstant, finite-energy pseudoholomorphic map R 2 -+ M to one of the sym-
plectic manifolds in M (this can be completed to a nonconstant pseudoholomorphic
sphere in Me);

- a nonconstant, finite-energy pseudoholomorphic map H Mj- x Mk to a product of
symplectic manifolds associated to the patches on either side of a seam in QV, that
satisfies the corresponding Lagrangian seam condition (this can be extended to a
nonconstant pseudoholomorphic disk in M[ x Mk, in particular including the cases
of disks with boundary on LO, C M-- x M, or L1 2 c M7- X M2);

- a nonconstant, finite-energy map H -> M6- x M2 with boundary condition in L01 x L 12
with lift to Lol x MI L 12 (the singularity can be removed in the case of cleanly-
immersed composition; the same holds for the next type of bubble);

- a nonconstant, finite-energy figure eight bubble.

1.1.3 Width-independent elliptic estimates

The analytic core of the two results just described is a substantial strengthening of the strip-
shrinking estimates in [WeWol] - in particular, from embedded to immersed geometric
composition. In 2 I construct a special connection that allows me to obtain estimates
without boundary terms for quilted Cauchy-Riemann operators, with uniform constants for
all small widths of a strip. This allows us to strengthen the uniform H2 n W1'4 estimates of
[WeWo1] to Hk+1 and thus Ck-1 for any k > 1, which is e.g. needed to deduce nontriviality
of bubbles with generalized boundary condition in Loi o L 12 .

The estimate I prove for any k > 0 is

||I||Rk+1(Q,6) < C(||D(I|k(QR 6) + ICIIHO(QR,6)),

where Qp, is a quilt with total domain (-p, p) 2 and seams at (-p, p) x { 6}, ( is a section
of the tangent bundles of MO, M1 , M2 by a triple of maps Uo, u1 , U2 from the bottom resp.
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middle resp. top patches to MO resp. Mi resp. M2 , D is the linearized Cauchy-Riemann

operator, and Hk is a modification of the Sobolev space Hk:

k-2

I((s, t)|ak = (S)O k + sup I|V'((s, to)IH1(SE(-P,P))
1= to E(-p,P)

k-2

l1(s, t)IIHk + r, IVP'(s, t)ICoHi
1=0

For fixed p and J, the Hk- and kk-norms are equivalent due to the embedding H' -+ C0

for 1-dimensional domains. However, this equivalence is not uniform in 6. The utility of

the Hk-norm is that the Ct'Hs-terms satisfy a product rule that is uniform in 6, since the

H'-norm is applied on the domain (-p, p).

1.2 Construction of the A,, 2-category Symp

Throughout this section, p, will denote the k-ary composition operation in the Aoo category

Fuk(MJ^ x Mj).

1.2.1 The A,, bifunctor Symp

We begin our blueprint of Symp by modifying the figure eight bubble by placing 12 0
input marked points on the 12-seam (between the Mi patch and the M2 patch), li 0
input marked points on the 01-seam, and one output marked point at the singular point of

the quilt (the left half of Figure 1-1 is the 12 = 1, li = 2 case). The 12-seam is now divided

into 12+1 segments; label these by Lagrangians L12, ... L, L C M- x M2 . Label the segments

of the 01-seam by L01, ... , c M6- x Mi. Given a finite-energy pseudoholomorphic quilt

with this domain, and assuming that L81 a L2 and Ll 1  a are cleanly immersed and that

the branches of one intersect the branches of the other cleanly, it follows' from Removal of

Singularity Theorem 2.1.2 that the limit of the three maps at the output marked point is
a generator of CF* (La a L12 , L o L1 2 ). The 0-dimensional moduli space of such quilts

should therefore define a map

C2(- -) CF*(L2-1, L%) 12 0 CF*(L?2, L2) (1.1)

0 CF*(L1--1, L11) 0 - 0 CF*(L l, L11)

CF*(L8, o L2, L o L ).

The first step toward combining these quilts into a moduli space will be building a Deligne-

Mumford-like compactification of their domains, as a manifold with boundary with corners.

For that purpose note that the moduli spaces of quilted disks constructed in [MaWo] to

represent Stasheff's multiplihedra can be viewed as configuration space of marked points on

one of the two seams of the domain of figure eight bubbles. Allowing for marked points

on both seams is analogous to the construction of "biassociahedra" in [MaWeWo], and will

again yield families of marked quilted surfaces parametrized by singular polyhedra. We can

1 Removal of Singularity Theorem 2.1.2 is stated for figure eight bubbles with no input marked points
(i.e. with seams mapping to single Lagrangians Loi, L 12 ). However, the proof is local at the singularity, so
it also applies to figure eights with marked points.

13



1 Xi

3: Yi
/X

y y 7l

C( 2((y~ 1 (| 2 ,x()) I $21 0 (Y1 I o( (X2),X0 C2( 2) X

p2,2(C(Y I2) C2 ( x1), C(i)) (0)2(C2( , x), C2( )

2 (C), C2y( X1) 2) C2 (yI) 1 (Y ) 2( ), C2( X1)))

Figure 1-3: These quilted surfaces represent on the one hand the algebraic expressions in

the bifunctor relation of Conjecture 1.2.1 (with the exception of curvature terms), and on

the other hand the expected boundary strata of the 1-dimensional moduli space of figure

eight bubbles with one marked point on the 01-seam and two on the 12-seam (with the

exception of bubbling that does not involve marked points).

then build moduli spaces of pseudoholomorphic quilts whose domains are given by points in

a biassociahedron.

The boundaries of 1-dimensional moduli spaces of such quilts will then give rise to

a collection of relations among these maps. These boundary components will arise from

several effects. Firstly, the underlying biassociahedron of quilted surfaces has boundary.
In the example of Figure 1-3, its top strata correspond to the eight algebraic terms not

involving pi1-terms. Secondly, Floer trajectories can break off at each marked point on a

seam. In the example of Figure 1-3, this corresponds to the three algebraic terms in the

first row involving pre-composition with ph or pI12. Moreover, energy concentrating at
the outgoing marked point (where in cylindrical coordinates two pairs of 01- and 12-seams

approach each other asymptotically) can be captured geometrically as a Floer trajectory for

the composed Lagrangians breaking off. In the example of Figure 1-3, this corresponds to

the algebraic term in the bottom left corner involving post-composition with b2. Together,

14



these algebraic terms capture the relations describing an A, bifunctor. Finally, energy
can concentrate without marked points being involved, yielding sphere, disk, or figure eight

bubbles. Spheres will be interior points of the ambient polyfold, hence do not contribute
to the algebraic relation. Disk bubbling can appear on a 01- or 12-seam, yielding algebraic
terms involving pre-composition with pi1 or /-2, which reflect curvature of an A, algebra
associated to a Lagrangian Lo1 or Li12 . Figure eight bubbling can only appear when the
underlying quilted surface also approaches a boundary face of the biassociahedron that can
be interpreted as the width of the middle strip shrinking to zero. In the example of Figure 1-
3 these are the configurations in the second and third row corresponding to post-composition
with p 2 for k > 1. Since figure eight bubbling does not add to the corner index, we expect
additional boundary faces arising from adding any number of figure eight bubbles without
marked points to the 02-seams of these configurations. Algebraically, this will be reflected
by CO terms in any number of entries of p/2, meaning that the A, bifunctor itself is curved.
More precisely, we expect for each 12, 11 > 0 a relation of the form

Z C(y12 ... ,yk+m+1,t4 2(Yk+m, ... ,Yk+1), yk, ... , Y1 Ixi, ... , xi) +
+ C(y1 2 , ... , Y1 1 X1 1, ... ., k+m+1,l o(Xk+m,.. , Xk+1),Xk,. .., i) =

= >3 (C(Y12, ... , Y1 2 -k?,+i I Xe, ... , Xi-mn+1), ... , C(yki, ... Y1I XMI, .. ., -x)).

For instance, the twelve summands not involving curvature terms in the 12 = 1, 11 = 2
case, together with their corresponding boundary strata, are shown in Figure 1-3. These
relations are exactly what is required of a curved A. bifunctor, so we are led to the following
conjecture.

Conjecture 1.2.1. Given compact symplectic manifolds Mo, M1, M2 , there is a curved A,
bifunctor

C2: (Fuk(M- x M2 ), Fuk(M6- x Mi)) -+ Fuk(M- x M2)

between Fukaya categories of cleanly-immersed Lagrangians that sends a pair of Lagrangians
(L 12 , Lo1 ) with cleanly-immersed composition to Lo1 o L 12 and is defined on the morphism
level by the maps C2 (_ I -) in (1 1).

Remark 1.2.2 (Immersed Fukaya categories). Conjecture 1.2.1 is naturally stated in the im-
mersed setting: Even if the source Fukaya categories were chosen to contain only embedded
Lagrangians as objects, the target Fukaya category would still need to contain immersed
Lagrangians, since Hamiltonian perturbation of Lagrangian correspondences Loi, L 12 can
always achieve cleanly-immersed but generally not embedded composition. The Fukaya cat-
egories in Conjecture 1.2.1 will have as objects immersed Lagrangians p: L -+ M with clean
self-intersections; boundary conditions in L for a map u: E -+ M on y C 49E will require
the data of a continuous lift of uI. to L. Cleanly-immersed Lagrangian boundary conditions
have been discussed in various settings before, but [BoWel] will develop both analysis and
algebra from scratch - the first since we choose to work in the framework of polyfolds,
and the second since our version of the immersed Fukaya category requires control of sheet-
switching at self-intersection points in terms of cochain labels which encode contributions
from sheet switching figure eight bubbles.

Remark 1.2.3. Special cases of Conjecture 1.2.1 will yield A,-functors similar to the ones
constructed in [MaWeWo]. The main differences are that [MaWeWo] works with extended

15



Fukaya categories (whose objects are composable sequences of embedded Lagrangian cor-
respondences) and is necessarily limited to settings (such as monotonicity) in which figure
eight bubbling is excluded.

(i) For M2 = pt the restriction of C to a fixed unobstructed object L0 1 E Fuk(Mg x M1)
yields a curved Aoo-functor C, 01 : Fuk(M7) -+ Fuk(M-). On the object level, this
functor sends L1 C M7 to Loi o L1 C M6- if this composition is cleanly immersed; on the
morphism level, this functor is defined by the maps C(- 1) arising from the moduli spaces
of quilted disks with a nonnegative number of marked points on the boundary circle, as
on the right of Figure 1-1.

(ii) For Mo = pt the restriction of C to a fixed unobstructed object L 12 E Fuk(M7 x M2 )
yields a curved A,,-functor L 1 2 C: Fuk(Mi) -+ Fuk(M2 ) that sends L1 C M1 to LIoLI2 C
M2 if this composition is cleanly immersed, and is defined by the maps C(I-) on morphism
level.

(iii) We expect the special case CAm resp. AMC of both functors to be the identity functor
on Fuk(M x pt) c Fuk(M) c Fuk(pt- xM). More generally, we will show in [BoWell
that (CLT, L12 C) and ( 12 C, CLT) form adjoint pairs, where LT c M2 x MI is obtained

from L 12 C Mi x M2 by exchange of factors.

1.2.2 The k-ary operations C'

The construction described in the previous subsection can be extended to quilted spheres
with k + 1 patches, where the seams are k circles that all intersect tangentially at the south
pole, and where we allow a nonnegative number of input marked points on each seam and
regard the south pole as the output marked point. (The figure eight bubble is the k = 2
case.) Considering 0-dimensional moduli spaces should define maps

Ck(- -- ) : CF*(L >k- 1 -L - 0 CF*(Lo,, ik _1l) 0 --- (1.2)

-0 CF*(L"71 , L) 0 ... 03 CF*(L 1 , L11 )

+CF*(L0 1o -- o Lo _igL"o o ...- oL l .
-+C"~(81 Q0 . (k-1)kl L 0 1 o.. (k-1) k)

Note that since quilted spheres with two patches can be identified by disks mapping to the
product, Ci will be equal to the map sending k cochains (Xk, ... X, i) to the A,) composition

Pol (Xk, - X0 ,2)
Considering the boundary strata of 1-dimensional moduli spaces of such quilts, along

with the gluing analysis in [BoWe2I, leads us to the following conjecture, which generalizes
Conjecture 1.2.1.

Conjecture 1.2.4. For k > 1, the Ck 's satisfy a relation (Rk), beginning with:

C(... , C( ... ),...) = 0 (Ri)

C2(.. I CI(-...) -|- + 1: C2(.. I .. I Cl(- -,- )+ (R2)

+ Z Cl(C 2 (... I .. ), ... ,C 2(... 0.

We therefore plan to define an A,, 2-category to be a collection of objects, 1-morphisms, 2-
morphisms, and k-ary composition maps Ck that send a k-tuple of composable 1-morphisms
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Figure 1-4: One of the domains for the ternary part of FL12 . Setting Mo := pt in Figure 1-1

is equivalent to deleting the blue patch, which leaves us with a quilted disk.

to a single 1-morphism, send an (lk, ... , 1i)-tuple of 2-morphisms to a single 2-morphism as

in (1.2), and satisfy the relations (Rk) in Conjecture 1.2.4.

1.3 Applications of Symp and relations with existing construc-

tions

1.3.1 C 2 specializes to "symplectic Fourier-Mukai transforms"

When we set Mo = pt and restrict C2 to a fixed object L 12 E Fuk(Mi x M2 ), we obtain

a curved A.. functor FL12 : Fuk(Mi) -÷ Fuk(M2 ). On the object level, this functor sends

L1 C M, to L, o L 12 C M2 , and on the morphism level, this functor is defined by the

maps C2( I -) arising from the moduli spaces of quilted disks with a nonnegative number of

marked points on the boundary circle, as in the right half of Figure 1-1.

These A,, functors are similar to those defined in [MaWeWo] between extended Fukaya

categories. Mau-Wehrheim-Woodward sidestepped serious analytical difficulties by straight-

ening the seams in a neighborhood of the output marked point, at the price of producing a

less geometric functor. Furthermore, there is a formal similarity between our A,, functors

and Fourier-Mukai transforms, functors between derived categories of coherent sheaves

that are a standard tool in algebraic geometry. Kontsevich's Homological Mirror Symmetry

Conjecture predicts that the Fukaya category is dual to the derived category of coherent

sheaves, so we expect our A,, functors - "symplectic Fourier-Mukai transforms" - to be

dual in some precise sense to Fourier-Mukai transforms via mirror symmetry.

"Composition commutes with categorification"

Relation (R3) of Conjecture 1.2.4 has an immediate consequence for symplectic Fourier-

Mukai transforms:

Corollary of Conjecture 1.2.4. Assume Conjecture 1.2.4. If M1 , M2 , M 3 are compact

symplectic manifolds and L 12 and L23 are objects of Fuk(Mi x M2 ) and Fuk(M2j x M 3 ),

then the curved A,, functors CL1 2 oL2 3 and CL23 0 CL12 are homotopic.

Proof. In (R3), set Mo := pt and fix L 12 C Mi- x M2 and L23 c M2 x M3 . E

This is the analogue of the "categorification commutes with composition" statements made

for the analogous A,, functors between extended Fukaya categories in [MaWeWo, WeWo2].
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Adjunction properties implied by the relations in Symp

In this subsubsection we derive another consequence of Conjecture 1.2.4: transposing a
Lagrangian correspondence gives rise to adjoint pairs of symplectic Fourier-Mukai trans-
forms. The impetus for considering adjunction properties came from the following fact
about Fourier-Mukai transforms.

Proposition 1.3.1 (Prop. 5.9, [HuJ). For any object P12 E DbCoh(Xi x X 2 ), set

P12,L := Pl' 0 7r2wX2 [dim(X2 )], P12,R P 0 7r wxl [dim(Xi)],

where wx, is the canonical bundle of Xi. Then the Fourier-Mukai transforms

GP 2 L : DbCoh(X 2 ) -+ DbCoh(X1 ), GP12,R : Db Coh(X2 ) -- DbCoh(Xi)

are left resp. right adjoint to Gp 12 .

The analogous property for symplectic Fourier-Mukai transforms depends on Conjec-
ture 1.2.4 and the following, much smaller, conjecture.

Conjecture 1.3.2. Given a compact symplectic manifold M, the following triangle com-
mutes:

(Fuk(M-), Fuk(M)) > Fuk(pt)

Z/2Z -Vect.

Here A is the diagonal bimodule, where Fuk(M-) has been identified with Fuk(M)P.

Corollary 2 of Conjectures 1.2.4 and 1.3.2. Assume Conjectures 1.2.4 and 1.3.2. If
M1 , M2 are compact symplectic manifolds and L 12 is an object of Fuk(M7- x M2 ), then

(CL 12 ,C L) is an adjoint pair.

Proof. Consider the following diagram:

(Fuk(MI), Fuk(Mi x M2 ), Fuk(M2j)) (C2,id) > (Fuk(M2 ), Fuk(M27))

(id,C2 ) C2

(Fuk(Mi), Fuk(Mi-)) Fuk(pt)

2/2Z -Vect.

By Conjecture 1.2.4, the inner square commutes; by Conjecture 1.3.2, the triangles commute.
Given L 12 E Fuk(M- x M2 ), the commutativity of the outer square implies that (FL12 , FLT
is an adjoint pair. L
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Figure 1-5: The two moduli spaces whose identification would yield Conjecture 1.3.3.

1.3.2 The closed-open string map as a specialization of C 2

The closed-open string map [Abol is a homomorphism CO : QC*(M) - CC*(Fuk(M))

from quantum cochains of a closed symplectic manifold to Hochschild cochains over its

A, category. It is an important tool for studying deformations of Fuk(M), and is a crucial

ingredient in Abouzaid's generation criterion for Fuk(M) (which has so far only been proven

in the open, wrapped setting). In this subsection we conjecture that the closed-open string

map is a specialization of geometric composition. This point of view was (at least implicitly)

suggested in [Gal and [RiSm].

Conjecture 1.3.3. After identifying QC*(M) with CF*(zAM, AM) and CC*(Fuk(M)) with

hom(idFuk(M), idFuk(M)), the closed-open string map CO : QC*(M) -+ CC*(Fuk(M)) agrees

with the geometric composition bifunctor C2 : (Fuk(M), Fuk(M- x M)) -+ Fuk(M) when

applied to a nonnegative number of morphisms in Fuk(M) and one endomorphism of Am.

Figure 1-5 illustrates the two moduli spaces whose identification would confirm Conjec-

ture 1.3.3.

Corollary 3 of Conjectures 1.2.4 and 1.3.3. Assume Conjectures 1.2.4 and 1.3.3. Then

the following diagram commutes:

QH* (M1) HF*(Ll2,L 12) QH*(M 2 )

H(CO)I IH(CO)

HH*(Fuk(Mi)) : HH*(Fuk(Mi), FL*1 2 Fuk(M2 )) - HH*(Fuk(M2)).

Here the upper horizontal arrows are induced by the geometric composition bifunctor, after

identifying quantum cohomology with Floer cohomology of the diagonal. The middle vertical

arrow uses the identification CC*(A, F*1B) = hom(F, F) for F : A -+ B an A, functor. The

bottom arrows come from the contra- resp. covariant functoriality of Hochschild cohomology

in the first resp. second variables.

Proof. The commutativity of the left resp. right squares follows from Conjecture 1.2.4 applied

to (Fuk(Mi), CF*(AMl, AM 1 ), L 12) resp. (Fuk(MI), L12 , CF*(AM2, A M2 )).

I expect that in situations where Hochschild homology and cohomology are dual (see [Gal),

partially dualizing the outer square in this conjectural corollary will yield a square similar

to [RiSm, Theorem 1.3].
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Chapter 2

Removing the figure eight singularity

In the case of embedded composition of LO, and L 12 , where the projection

7r02: Loi x M1 L 1 2 -+ Mo x M2

is injective and hence a Lagrangian embedding, monotonicity and Maslov index assump-

tions allowed Wehrheim-Woodward [WeWol] to establish an isomorphism of quilted Floer

cohomologies (as defined in [WeWo4])

HF(. . ., Loi, L 12 ,...) HF(. . ., LO, o L 12 , .. .). (2.1)

The analytic core of the proof was a strip-shrinking degeneration, in which a triple of

pseudoholomorphic strips coupled by Lagrangian seam conditions degenerates to a pair of

strips, via the width of the middle strip shrinking to zero. The monotonicity and embedded-

ness assumptions allowed for an implicit exclusion of all bubbling, which was conjectured to

include a novel figure eight bubbling that (unlike disk or sphere bubbling) could be an

algebraic obstruction to (2.1).

Gromov Compactness Theorem 3.3.1 proves that a blowup of the gradient in a sequence

of pseudoholomorphic quilts with an annulus or strip of shrinking width gives rise to one

of the standard bubbling phenomena (pseudoholomorphic spheres and disks) or a nontrivial

figure eight bubble, as depicted in Figure 2-1. In this chapter we apply this Gromov

M, 
M

Figure 2-1: The left figure illustrates a figure eight bubble, the middle figure illustrates its

reparametrization as a pseudoholomorphic quilt whose domain is the punctured sphere, and

the right figure illustrates an inverted figure eight (defined in 2.1, and equivalent to the

left figure via z -+ -1/z). The domain of the left and right figures is C, and the point at

infinity in the left figure corresponds to the punctures in the middle and right figures.
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Compactness Theorem to show that the figure eight singularity can be removed, as [WeWol]
conjectured:

Removal of Singularity Theorem 2.1.2: If the composition L0 1 o L 12 is cleanly im-
mersed (immersed, and in addition the local branches of Lol o L 12 intersect one another
cleanly), then wo resp. w2 extend to continuous maps on D2 m (R x (-oo, 0]) U {oo} resp.
D2 - (R x [0, oc)) U{oo}, and wi(s, -) converges to constant paths as s -+ +oo. If L0 1 o L 12
is embedded, then the latter limits are equal.

This theorem is the first step in the program outlined in 1, which proposes a collection of
composition operations amongst Fukaya categories of different symplectic manifolds.

In support of 1, Appendix A also proves the analogous removal of singularities for pseu-
doholomorphic disks with a type of immersed boundary values in L0 1 o L 12 , under the
assumption that the latter is cleanly-immersed resp. immersed. These results are not nec-
essarily new, see Appendix A for citations, but provided for the sake of completeness. It
is also conceptually useful to recast the (possibly singular) disk bubbles with boundary on
Lo, o L12 as squashed eight bubbles, that is as triples of finite energy pseudoholomorphic
maps

wo: R x (- o, 0] - Mo, wl: R -* M, w2 : R x [0, oo) -+ M2

satisfying the generalized seam condition

(wO(s, 0), w1(s), w1(s), w2(s, 0)) E Lol X m, L 12  Vs E R.

In 2.2 we establish a collection of strip-width-independent elliptic estimates that allow
for nonstandard domain complex structure. This is necessitated by the following analytic
formulation for the figure eight singularity: In cylindrical coordinates for a neighborhood of
infinity, the two seams become two pairs of curves approaching each other asymptotically
(see the right figure in Figure 2-1). On finite cylinders, the standard complex structure on
this quilted surface can be pulled back to a quilted surface in which the width of the strips
is constant and the complex structures are nonstandard, but converge in CO and stay within

a controlled Ck-distance from the standard structure for any k > 1.

The hypothesis that M0 , M1 , M2 are closed is not essential: As explained in 3, it is enough
for the symplectic manifolds to be geometrically bounded and to have a priori C0 -bounds
on the various pseudoholomorphic curves. In a future paper we will treat the noncompact
setting in a more systematic way.

2.1 Removal of singularity for the figure eight bubble

In this section and the next we will be working with symplectic manifolds M0 , M1 , M2 ,
almost complex structures Jo, Ji, J2 , and pseudoholomorphic curves with seam conditions
defined by compact Lagrangian correspondences

L01 C M(- x M1 , L 12 c Mi~ x M2 , (2.2)

with L0 1 o L12 either immersed or cleanly immersed:
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* LO, and L 12 have immersed composition if the intersection

Lol xM, L 12 = (Loi x L 12) n (Mo x Am, x M 2 )

is transverse. This implies that 7ro2: Loi X M L 12 -+ M6~ x M2 is a Lagrangian immer-

sion, e.g. by [WeWo4, Lemma 2.0.5], and in this situation we will denote the image by
Loi o L12 := ro2 (Loi xM, L12 ).

* If L0 1 , L 12 have immersed composition and furthermore any two local branches of

Lo, o L 12 intersect cleanly - i.e. at any intersection of two local branches there is a

chart for M6- x M2 (as a smooth manifold) in which each of those two branches is
identified with an open subset of a vector subspace of R' - then the composition
L0 1 o L 12 is cleanly immersed.

The purpose of 2.1 is to prove a removal of singularity theorem for inverted figure eight
bubbles.

Definition 2.1.1. An inverted figure eight bubble between L01 and L1 2 is a triple
of smooth maps

wo: B1 (-i){O} -+ Mo
W = wi: C*-,(Bi(i) U Bi(-i)) -+ Mi

w2: B1()-.{O} -+ M2

satisfying the Cauchy-Riemann equations 9ee + J(w)otw = 0 for f E {0, 1, 2} and the
seam conditions

(wo(-i + ei),wi(-i + e"0)) E Lo1 V 0 01, (wi(i + ei), W2(i + e"9)) E L 12 V0 ',

and which have finite energy

fw2wo + fwIwi + fwlw 2 = fdwo2 + f Idwi, 2 + f Idw2 12 <o

where we have endowed M with the metric

ge := we(-, Je-). (2.3)

Throughout 2.1, the norm of a tangent vector on Me will always be defined using ge.

Fix for 2.1 closed symplectic manifolds MO, M1 , M2 , compatible almost complex
structures J E J(M, we), I E {0, 1, 2}, compact Lagrangians L0 1 , L 12 as in (2.2)
with cleanly-immersed composition, and an inverted figure eight bubble w between
Lo, and L 1 2 .

In fact, only the arguments in 2.2 require the composition LO, o L 12 to be cleanly immersed,
rather than just immersed, but we assume the stronger hypothesis throughout 2.1 for
cohesiveness.

The following theorem says that the singularity at 0 of a figure eight bubble can be
continuously removed, under the hypothesis of cleanly-immersed composition.
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Theorem 2.1.2. The maps WO, w 2 continuously extend to 0, and the limits lim+0, Re(z)>O W1(Z)

and limz-+o, Re(z)<O wi(z) both exist. If moreover the immersion 7r02 : Lo, x M, L12 - M6~ x
M2 is an embedding, then the latter limits are equal so that w 1 also extends continuously to
0.

The proof of this theorem draws on the removal of singularity strategies in [AbbHo, 7.3]
and in [McSa, 4.5]. First, we follow [AbbHo] and establish a uniform gradient bound in
cylindrical coordinates near the puncture (Lemma 2.1.4), which we use to show that the
lengths of the paths 0 - we(Eei0 ) converge to zero as e -+ 0 (Lemma 2.1.3). The substantial
modification to the argument of [AbbHo] is that we must use the Gromov Compactness
Theorem 2.1.2 in order to prove uniform gradient bounds in Lemma 2.1.4. Once we have
proven that lengths go to zero, we follow [McSa] and prove an isoperimetric inequality for
the energy (Lemma 2.1.8), which we use to show that the energy on disks around the punc-
ture decays exponentially with respect to the logarithm of the radius. Here the nontrivial
modification is in the quilted nature of our isoperimetric inequality. Finally, an argument
from [AbbHo] allows us to conclude that wo and w2 extend continuously to the puncture.
The continuous extension of wi follows from the gradient bound in cylindrical coordinates
and the immersed composition of L0 1 and L 12 . The formal proof of Theorem 2.1.2 is given
in 2.1.2.

2.1.1 Lengths tend to zero

The first step toward the Removal of Singularity Theorem 2.1.2 is to show that the lengths
of the paths 0 - wf(ce 9 ) converge to zero as E -+ 0. This is nontrivial since the confor-
mal structure of the quilted surface near the singularity does not allow us to apply mean
value inequalities effectively, as in previous removal of singularity results for pseudoholomor-
phic curves. Hence the finiteness of energy only provides a sequence E" -+ 0 along which
the lengths tend to zero. This allowed Bottman-Wehrheim to deduce a weak removal of
singularity in 3, but the stronger Theorem 2.1.2 will require the full strength of the gen-
eralized strip-shrinking analysis developed in @2.2 and the resulting Gromov Compactness
Theorem 3.3.1.

In this subsection we will work in cylindrical coordinates centered at the singularity,
hence we define the reparametrized maps

vf (s, t) := we (e27(s+it)) for f E {0, 1, 2}, (2.4)

whose domains V, V, V2 c (-oc, 0] x R/Z are given by

Vo := {(s, t) I S < 0, It- 3 - (s) }, V2  {(s, t) Is 0, It- '1< -0(s)},
Vi {(s, t) I s < 0, It - <1 9 0(s) V It - 1 9(s)},

with
0(s) : arcsin(je 2rs). (2.5)

Now the paths we(ce") for fixed e E (0, 1] correspond to the following paths for fixed
s = logE < 0:

27r -

:vO(s, -) : [ + 9(s), 1 - 9(s)] -+ M0 , 2 := v2(s, -) [9(s), j - 9(s)] -+ M2 ,

-Y; vi(s, -) : [ - 9(s), - + 9(s)] U [1 - 9(s), 1 + 9(s)] -+ Mi. (2.6)
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s = -00 *--

Figure 2-2: To prove Lemma 2.1.4, we assume that the cylindrical reparametrizations ye do

not have uniformly bounded gradient, then bubble off a nonconstant quilted map. In this

illustration, the bubbled-off map is a figure eight bubble.

The length of y is given by the integral f(y) := fIdyf I dt over the respective domain, and

will be controlled by the following main result of this subsection.

Lemma 2.1.3. The L 2 -lengths of the paths 1'_y2 defined in (2.6) converge to zero as

S -+ -oo:

J1-0(s) 1/2 0(s) 1+0(s)\ p1/2- 0 (s)

A y012 dt + + 1 12 dIt + ]L7 22 dt -+ 0.
1/2+0(s) 1/2-0(s) 1-0(s)/ 0(s) *-OO

In particular, the length f(es) := (QyS) + f(yl) + f('y2) tends to zero as s -+ -oo.

The proof of Lemma 2.1.3 will use ideas from [AbbHoI. The novel difficulty - due to the

conformal structure - is to establish the following uniform gradient bound on |dvj, the

upper semicontinuous function defined by

Jdvj: (-oo, 0] x R/Z -+ [0, oc), |dV_(s, t)1 2 := Jdvo(s, t)1 2 + jdvi(s, t)12 + Idv2(s, t)12,
(2.7)

where the functions Idve(s, t) I are set to zero where they are not defined.

Lemma 2.1.4. The gradient |dv defined in (2.7) is uniformly bounded.

We prove Lemma 2.1.4 by contradiction: if jdve| is not bounded for some f, then there is a

sequence of points (sv, tv) (necessarily with s' -+ -oo) at which jdvfl diverges. Rescaling

at these points produces a nonconstant quilted map, as illustrated in Figure 2-2, but this

contradicts the finite-energy hypothesis on v. The technical input the Gromov Compactness

Theorem 3.3.1. This theorem is needed to deduce that the rescaled maps actually converge.

In order to state it, we need to define the domains of the maps and a controlled fashion in

which the strip-width can tend to zero.

The following definition is the only instance in 2.1 where we allow the almost complex

structures to be domain-dependent, so that the notion of a squiggly strip quilt is flexible

enough to be used in 2.2.

Definition 2.1.5. Fix p > 0, a real-analytic function f: [-p, p) -+ (0, p/2], domain-

dependent compatible almost complex structures Je: [-p, p] 2 -* J(Me, we), t E {0, 1, 2},

and a complex structure j on [-p, p]2 .

* A (Jo, J1 , J2 ,j)-holomorphic size-(f, p) squiggly strip quilt for (LO1 , L1 2 ) is a
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triple of smooth maps

vO: {(s, t) E (-p, p)2 I t < -f(s)} -+ Mo

V= Vi: {(s, t) E (-p, p)2 I t| < f(s)} - 1  (2.8)

v2: {(s, t) E (-p, p) 2 It > f (s)} -+ M2

that fulfill the seam conditions

(vo(s, -f(s)), vi(s, -- f (s))) E Loi, (v1(s, f(s)), v 2(s, f(s))) E L 12  V s E (-p, p),
(2.9)

satisfy the Cauchy-Riemann equations

dve (s, t) o j(s, t) - Je (s, t, ve (s, t)) o dve (s, t) = 0 Vf E {0,1,2} (2.10)

for (s, t) in the relevant domains, and have finite energy

E(v) := fv*oO + fv*Wi + f V2W 2 < 00.

A (Jo, J2 ,j)-holomorphic size-p degenerate strip quilt for LO, XM1 L 12 with
singularities is a triple of smooth maps

vo: (-p, p) x (-p, 0] 'N S x {0} -+ Mo
V VI: (-p, p) - S -+ M1  (2.11)

V2: (-p, p) x [0, p) _ S x {0} --+ M2

defined on the complement of a finite set S c R that fulfill the lifted seam condition

(vo(s, 0), v1(s), vi(s), v 2 (s, 0)) E Lo, X M, L 12  V s E (-p, p) -S, (2.12)

satisfy the Cauchy-Riemann equation (2.10) for t E {0, 2} and (s, t) in the relevant
domains, and have finite energy

E(v) := fv*wo + fV2W 2 < 00.

When j is the standard complex structure i: o9, -+ at, at - -as, the Cauchy-Riemann
equation (2.10) can be expressed in coordinates as:

atv w(s, t) - Je (s, t, vt (s, t))asve (s, t) = 0.

The novel hypothesis necessary for a sequence of squiggly strip quilts of widths (f"),EN to
converge C' away from the gradient blow-up points is that the widths "obediently shrink
to zero":

Definition 2.1.6. Fix p > 0. A sequence (f )vEN of real-analytic functions fv: [-p, p] -
(0, p/2] obediently shrinks to zero, fV -> 0, if maxse[_pp f"(s) 0 and

dkf(sI_
maxse_,,j -Ck<0f (s)N

sup . Ck<oo Vk EN,
VEN minsE [-p,p] f , S
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and in addition there are holomorphic extensions F': [-p, p] 2 -+ C of f"(s) = FV(s, 0) such
that (FV) converges CO to zero.

We are finally in the position to bound the gradients of the reparametrized maps ye from

(2.4).

Proof of Lemma 2.1.4. We will prove the equivalent statement that the "folded maps"

ue: Ue -+ Mt x M;-, ue(s, t) : (v(s, t), ve(s, -- t)) for t = 0, 1, 2

have uniformly-bounded gradients, where the domains U are given by

UO:={s t) |s 0, -1 < t < -0(s) }, U2 :{(s, t) | s < 0, 0(s) :5 t < }

U := {(s, t) 1s < 0, -9(s) t < 9(s)}.

These maps are pseudoholomorphic with respect to the almost complex structures Je
Jt ( (-J) and satisfy the following boundary and seam conditions for s < 0:

uo(S, -A) E Am(,, (uo (s, - 0(s)), u 1(s, - 0(s))) E (Lo 1 x Lo 1),

U 2 (8, O) E AM 2 , (ul(s, 9(s)), u2(s, 9(s))) E (L12 x L 12 )T.

(Here O(s) = - arcsin(le 2,s) as in (2.5), and (Lij x Lij)T is the image of Lij x Lij under the

permutation (xi, xj, yi, yj) '-+ (xi, yi, xj, yj).) Finiteness of the energy of the inverted figure
eight w translates into convergence of the integral lims,_) f(s,o] x [-1/4,1/4 } 2 o
the energy density

Idul: (-oo, 0] x [-!, ] -+ [0, oc), Idu(s, t)1 2 := Iduo(s, t)1 2 + dui(s, t)1 2 + Idu2 (s, t)1 2,

where the functions Idue(s, t) I are set to zero where they are not already defined (so Idu I is

upper semi-continuous). This convergence in particular implies

f(-oo,S]x[-1/4,1/4] 2Id_ 2  -+ 0. (2.13)

Now assume for a contradiction that there exists a sequence (sV, tv) E (-oo, 0] x [-1/4,1/4]

such that Idu(s", t")I -+ oo. Since the ue are smooth, this is possible only for s" -00;
passing to a further subsequence, we may in fact assume s'+ 1 < s' - 1 and sl < 1/4.

Depending on whether t' is 1/4 or is contained in (-1/4,1/4), we derive a contradiction

to (2.13):

t= 1/4. Assume t' = -1/4; the t' = 1/4 case can be treated in analogous fashion.

Define a sequence (u") by:

u : BI/ 8 (0) n H -+ Mo x M-, u"(s, t) := uo(s + s", t - 1/4).

The map u' is Jo-holomorphic and satisfies the Lagrangian boundary condition uO(s, 0) E

Am0 for s E (-1/8,1/8). Furthermore, Idu (0,t"+1/4)| -+ oo, t"+1/4 -+ 0 by assumption,
and the energy of u' is bounded by the energy of v, so [McSa, Lemma 4.6.5] implies the

inequality lim inf.... f B Oj)du'| 2 > 0, which contradicts (2.13).

too E (-1/4, 1/4). Define a sequence (u', uv, uv) of (Jo, J1 , J2 , i)-holomorphic size-(, ,')
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squiggly strip quilts, with

9": [-!,j] - (0,1], (s) := - arcsin(je27(s+s/)

by:

u(s, t) := ut(s + s", t).

The energy fB(0) jidu"|2 is bounded by the energy of v, and by assumption, the gradient

|du"(0, t") I tends to oc. In the following sublemma we establish the last hypothesis needed
to apply Theorem 3.3.1.

Sublemma 2.1.7. The functions 9v(s) = b arcsin( e2 (s+sv)) obediently shrink to zero as
V -4 00.

Proof of Sublemma 2.1.7. The convergence s" -+ -00 implies }e21(s~sv) -+ 0 in C, so the
equality arcsin(0) = 0 implies the C 0-convergence of Ov to zero.

To check the second condition for obedient shrinking, fix k > 1 and note that 9d' (s) =
+ s"), with C(s) = 1 arcsin(e 2,,) as above. The derivative d(s) is a linear com-

bination of the functions fe(s) := (4 - e4 7s)-(e-1/ 2)e47(e-1/ 2)s for f = 1, . . . , m. (This can

be seen by induction starting from do(') = (4 - e4 7s)-1/ 2e 2 7s.) This decomposition, the
inequality arcsin(x) ;> x for x E [0, 1], and the convergence s- -oo allows us to establish
the second condition:

maxse[_1/4,/4] IMf(s) s exp(47r(f - 1)(sv + 1/4))
sup <sup
vEN minsE[-1/4,1/4] 91(s) 'EN T exp(27r(sv - 1/4))

= sup 47r exp(47r((f - 1)s" + 1))
vGN

< 47r exp(7r).

The arcsine function extends to a holomorphic function arcsin: B1 (0) -+ C by the

(2) 2k+1power series arcsin(z) : = E' 4 (2k+1 so f " extends to a holomorphic function FV from

[-1/4,1/4]2 to C. Since the functions ie27r(z+s/) tend C' to zero and since arcsin(0) = 0,
the extensions F" also tend C' to zero. E

Part (2) of Theorem 3.3.1 now implies the inequality lim inf_. f ( Bd/ 8( d 12 >O , which

contradicts (2.13). El

Proof of Lemma 2.1.3. First, note that the domain [1/2-0(s), 1/2+(s)]U[1-9(s), 1+0(s)]
of -'g has total length 40(s) = arcsin(je 2rs), which converges to 0 as s -+ -oo. Hence
the gradient bounds of Lemma 2.1.4 immediately imply that the L2 -length of -'- converges
to zero as s -+ -oo. Moreover, these gradient bounds imply that to show the L2 -lengths of

-, ,7,2 converge to zero, it suffices to fix an arbitrary e > 0 and show that the L2 -lengths of

Ys I[E,1/2-EVs1[1 /2+E,1-E] converge to zero as s -4 -oo.
Fix e > 0. We will show that the L2 -length of 7y0[1/ 2+E,1-e] converges to zero as s -+ -00;

the proof for Y2 is similar. Choose so so that the domain of -yo contains [1/2 + e/2, 1 - e/2]
for all s < so. Now the C-bound on Idvol from Lemma 2.1.4 induces a Cm-bound on
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Vo(-Oo,so-1]x[1/2+e,1-e] for any m > 0. Indeed, we can apply the interior elliptic estimates

(e.g. [AbbHo, 6.3]) on each of the precompactly-nested domains

[so - k - 1, so - k] x [1/2 + E,1 - e] C [so - k - 2, so - k + 1] x [1/2 + e/2, 1 - e/2]

for k E N. Since for different k these domains are translations of one other, the constants in
the elliptic estimates are independent of k, and thus yield the desired C'-bounds.

For s < so, define

<D(s) := Ifsof f2E (IOsvO1 2 + atvo 12)

Then 41: (-oo, so] -+ [0, oo) is nondecreasing with lims-o (D(s) = 0 and

/1-E 1-6
'()= s (I9o (S, T)|2 + |otvo(s, r)|2) dr = j |Bvo(s, T)12 dT,

2 f/2+c 1,/2+E
1-f

"(s) = 2 (&Svo(s, r), VCSvo(s, r)) dT,
1/2+r:

where in the last quantity we are using the Levi-Civita connection with respect to the
metric go defined in (2.3). By the previous paragraph, there exists a constant c > 0 so that
4I"(s) < c for all s < so - 1. Now for any fixed 6 > 0 we can choose si so - 1 such that
<b(si) 62 /4c. For s < si, we obtain:

62 s) (V 5
- 2 J(Si) > <-(s) - <b(s - 2) = <'(a) du- 2 -4c - s-6/2c 2c2

where the last step uses the bound on 4b" to deduce '(o-) <1'(s) - cls - o-. This inequality

can be rearranged to yield <V'(s) < 6 for all s < si, and thus proves lim,,-oo '(s) = 0.
Since '(s) is equal to 11j' yI([1/ 2+e,1-]) and since I f is uniformly bounded, we have

now shown that the L 2-norm of 72 converges to zero as s -+ -oo.

The Cauchy-Schwarz inequality implies that the L'-norm of AyYo - i.e. the length i(-y')
- also tends to zero as s -+ -oo. E

2.1.2 An isoperimetric inequality and the proof of removal of singularity

In this subsection, we prove Theorem 2.1.2. The crucial inputs will be Lemma 2.1.3 from
2.1.1 together with the following isoperimetric inequality for the energy on (-cc, so] x R/Z,

E(2.; so) := f(-Oo,so)xR/Zd_2 dsdt.

Lemma 2.1.8. There exists C > 0 such that the following inequality holds for all s < 0:

E(v; s) 5 C S (7i)2
iE{O,1,2}

We defer the proof to later in 2.1.2; now, we turn to the proof of removal of singularity.
Throughout this subsection we denote

M0112:= M6- x M1 x M- x M2 , M0 2 := M6- x M2.
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Proof of Theorem 2.1.2.

Step 1. There exist C1, C2 > 0 such that the inequality E(v; s) C1 exp(C2 s) holds for all

s < 0.

Fix s < 0. The following inequality follows from Lemma 2.1.8:

Lem. 2.1.8 C 2 Ci
E(v; s) < C e(v(s,-))2  fjdv(st)Idt) -foIdo(s,t)j 2 dt

ee{O,1,2}

d

Manipulating this inequality and integrating from s to 0, we obtain E(E; s) E(!_; 0) exp(s/C).

Step 2. The limit lim 8__ vo(s, -) exists in C 0([5/8, 7/8], Mo).

Fix a C1 embedding i: Mo -+ RN; we will show that A := lim8 _4_o(i 1 vol[5/8,7/81) exists in
Co.

We begin by showing that A exists in L 2, where L 2 ([5/8, 7/8], RN) is defined using the
Euclidean metric on RN. Fix s2 5 si 0. Cauchy-Schwarz implies the following inequality:

( 7/8

II0 oV0)(Sl, -)-(i 0 VO)(82, -)IIL2([5/8,7/]) = 5/ Isis2

(Si - S2)1/2 7/
(5/8

as (i o vo) ds 2 dt)

'8 psi

8 I s ( i 0 V O ) I 1 d
s2

(2.14)

1/2

[sdt)

Since Mo is compact, there exists a constant of equivalence p > 0 for the norms induced by

9M. and i*geuc, so (2.14) yields the following:

II(i 0 vo)(s1, -) - (i 0 vo)(s 2 , -)IIL2([5/8,7/8])
(2. / 7/Q

( A ( 1 - 2) /
5/8

Step 1
< A Cl1/2(81 - S2) 1 / 2 exp(C2si/2) (2.15)

=: C3 (si - s 2 )1/ 2 exp(C2s,/2).

Write S2 = (m + E)s1 for m E N and E E [0, 1). We have:

I1(i o vo)(si, -) - (i 0 vo)((m + E)81, -)IL2([5/8,7/8])

S|0(i a vo)(msi, -) - (i 0 vo)((m + E)s1, -)L2([5/8,7/8])
rn-i

+ E 11(i 0 vo)(jsi, -) - (i 0 vo)((j + 1)si, -)IIL2([5/8,7/8])
j=1

(2.16)
(2.15)5 0318111/2 E exp(jC2si/2)

j=1

C31s1 1/ 2 exp(C2s,/2)

- 1 - exp(C2s1 /2)
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Define f(s) : (i o vo)(s, -)IL2([5/8,7/8]). This quantity tends to zero as s -+ -0Q

lim sup f(s) 5 lim sup Ijvo(s, -)|L2([5/8,7/8]) Lem 2.1.3
s->-00 S-oo

We can now show that A exists in W1 ,2 : We have

I(i o vo)(si, -) - (i a vo)(s2, -)wi,2([5/8,7/8) !5 (i 0 vo)(si, -) - (i a vo)(s2, -)IL2([5/8,7/8])

+ f(si) + f(s2)
(2.16) 0 31s1

1 /2 exp(C2s/2)+

1 - exp(C2sl/2)

which implies the equality

lim sup sup I(i 0 vo)(s1, 0-) - (i v0)(s2, -)w1, 2([5/8,7/8]) = 0.
Si-o+-0 s2E(-oo,s1]

Since W 1,2 ([5/8, 7/8], RN) is complete, A exists in W 1,2 . The Sobolev embedding W 1,2 - CO

for one-dimensional domains now implies that A exists in Co.

Step 3. We prove Theorem 2.1.2.

By Lemma 2.1.3, the first claim of Theorem 2.1.2 would follow from the existence of the

limits

Ao:= lim vo(s, j), A 2 := lim V2(8, 1),
S-+-00 8-+ -00 4

A: lim v1(s, ), A' lim vi(s, 1).

It follows from Step 2 that Ao exists, and an analogous argument shows that A 2 exists. It

remains to show that A,, A' exist.

To show that A1 exists, we will show convergence of the path

Y:s - (vo(s, 1 + 6(s)), V1(s, 1), vI(s, 1), v 2 (s, - - 6(s))

as s - -oo. This path takes values in Mo x Am, x M2 and lims_,-o d0 112 (7(s), Lo, x L12) =

0 (by Lemma 2.1.4), so the distances dMo,1 2 (-y(s), Loi x M, L 12 ) converge to zero. Hence there

exists a path #: (-oo, 0] -+ Lo, x m, L 1 2 satisfying the equality

lim dmo 112 ((s), (s)) = 0. (2.17)

(Indeed, define / by choosing a tubular neighborhood U of Lol XM1 L 12 , and compose -y
with the projection U -+ Loi X M, L 12 .) We will show that lims, 0 y(s) exists by showing

that lim,,-o,0 0(s) exists.

Lemma 2.1.3, the existence of Ao and A 2 , and (2.17) imply that XO2 := lims--0 0 7o2(/(s))

exists. Since 7ro2 restricts to an immersion of LO, x M1 L 12 into M0 2 , there exist finitely many

preimages 0112 , - l2 of X02 in Loi xM, L 12 . Choose e > 0 small enough that the preim-
age of B,(Xo 2 ) under 7ro2jLOjxmjL12 consists of k connected components U1,... , Uk , with

X31n 2 contained in Uj. Now choose so E (-c0, 0] such that 7r2(0((-O0, so])) is contained

in B,(Xo 2 ). The image 0((-oo, s2]) must then be contained in a single Uj. If (s,), (s',) are
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Figure 2-3: The start of our argument for Lemma 2.1.8 is to restrict an inverted figure eight

to an annulus centered at the singular point (the portion in the left figure between the dotted

circles), then reparametrize to a quilted tube with straight seams (the tubular part of the

boundary of the cylinder on the right). Next, we piecewise-smoothly extend to the interior

of the cylinder.

sequences with limit -oo such that x 1 2 : limp,, 0 /(s,) and xJ2 
2 := lim~so. 3 (s',) exist,

then ji and J2 must be equal; since Loi x Ml L 12 is compact, this is enough to conclude

that lim 0+o /(s) exists. As noted above, this is enough to conclude the first statement of

Theorem 2.1.2.

The points (Ao, A,, A1 , A 2 ) and (A 0 , A', A', A 2 ) are lifts in L0 1 X M, L 12 of (Ao, A 2 ), so if

the projection from Lo, x M, L 12 to M0 2 is injective, then A,, A' are the same point. l

Our proof of Lemma 2.1.8 is an adaptation to the quilted setting of [McSa, Lemma 4.5.1],

which is an isoperimetric inequality for the energy near an interior point of a J-holomorphic

curve. Their argument went like this: restricting the map to an annulus, then reparametriz-

ing, yields a map defined on the curved part of the boundary of a cylinder. By a lengths-go-

to-zero result analogous to our Lemma 2.1.3, they extend this map to the entire cylinder.

Their result now follows from Stokes' theorem, along with the isoperimetric inequality for

the symplectic area applied to the top and bottom caps of the cylinder. The difficulty in

adapting this result to the quilted setting is in the extension to the cylinder (see Figure 2-

3 for an illustration of the setup); the key will be the consequences of cleanly-immersed

composition recorded in the following lemma.

Lemma 2.1.9. There exist C > 0, e > 0 such that:

(i) If X02, Y02 E Lo1 o L 12 have lifts

x, x' E 7r2'I{X02} n (Loi xM 1 L 12 ), y, y' E 7'O2 {Y02} n (L01 xM, L1 2 )

with small distances

max{dm0 112 (Xy), dMo112 (xy') I <

then there exists a smooth path -Yo2: [0,11 -+ M0 2 with image in L01 o L 12 and smooth

lifts -y, -y': [0,1] -+ Lo1 x m1 L12 that have bounded lengths

(-Y02) + 4(Y) + f(Y') C dM0 2 (Xo2, Y02)
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Figure 2-4: The domains used in the proof of Lemma 2.1.8.

and satisfy -y(O) = x, -y(l) = y, -y'(0) = x', and -y'(1) = y'.

(ii) For x, x' E Lo1 x M1 L 12 with dM0 2 (7ro2(x), w02 (x')) < e, there exists a point Yo2 E

Lo1 o L 12 and preimages y, y' E 7r 1 (yo2 )fnLo1 xM1 L12 such that the following inequality

holds:

dM0 2 (ro2(x'), Yo2) -+- dmo2 (lro2(x), Yo2) + dMo1 12 (X, y) + dMo, 12 (X, y

< C dMo2 (o2(x), 7 02 (x'))

We will give only a brief sketch, since a formal proof is no more enlightening. The key is

that the cleanly-immersed hypothesis implies that any two branches of Lo, o L 12 meet like

two vector subspaces.

(i) If x, x', y, y' lie in the same local branch of Loi o L 12 , then the conclusion is immediate.

Otherwise, x and y lie in one branch, and x' and y' lie in another. Represent these

branches as open subsets of vector subspaces V, V' C RN. Then X02, Y02 lie in V n v',
and we may define -Y02 to be a path in V n V' from X02 to Y02 and -y (resp. -') to be

the lift to the portion of Loi xM, L 12 corresponding to V (resp. to V').

(ii) If x, x' lie in the same local branch of Lo, o L12 , the conclusion is again immediate.

Otherwise, represent the branches containing x, x' as open subsets of V, V' c RN. Set

y02 to be the nearest point in V n V' to x, and let y (resp. y') be the lift to the portion

of Lo, xM1 L1 2 corresponding to V (resp. to V').

Proof of Lemma 2.1.8.

Step 1. We prove Lemma 2.1.8 up to an extension result, which we defer to Steps 2 and 3.

It suffices to prove the lemma for s < so < 0, where so is chosen so that sup,s E(y1), i E

{0, 1, 2} is bounded by a constant 6 > 0 to be determined later. As illustrated in Figure 2-4,

partition the unit circle Si (0) into four segments by

Ao := {(x, y) E Si(0) I y < x, y < -x}, A, := {(x, y) E Si(0) x > y, x > -y},

A 2 := {(x, y) E Si(0) I y > x, y > -x}, A 3 := {(x, y) E S1(0) x < y, x < -y}

and set pi(i+1) := Ai n Aj+1 for i E Z/4Z. Given s1, S2 with s2 < s1 < so, define maps
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o-,: Ai x [s2, S1] -+ Mi, i E {0, 1, 2, 3} (where we set M3 := Mi) like so:

o-o (exp(27rit), s)

U 1 (exp(27rit), s)

-2(exp(27rit), s)

0-3(exp(27rit), s)

vo(s, 1 + 6(s) + 4(! - 26(s))(t - j)),
vi (s, 86(s)t),

V2 (s, 6(s) + 4(1 - 26(s))(t - ) ,
vi(s, 1 + 86(s)(t - ))

where we take t E [-1/8, 7/8]. These maps satisfy the seam condition

i E Z/4Z,

where we set L2 3 := LT2, L30 := L .

In order to apply Stokes' theorem, we will extend the maps o-i to
quadrants of the closed unit disk:

Uo:= {(x,y) E R(0,1) I y:! x, y 5 -x},

U2 := {(x, y) E 77(0, 1) 1 y > x, y -x},

U1 := {(x, y) E B(O, 1) I
U3 := {(x, y) E 7(0, 1)

the following four

x > y, x > -y}

x - y, x < -y}.

Choose s2 = tO < t1 < ... < tk = si such that for every j, the diameters of the images
-i(Ai x [ty, tj+i]) are bounded by J. As long as J is small enough, Steps 2 and 3 below allow

us to extend o-i to a continuous map Fj: Ui x [s2, s1] -+ Mi that is smooth on Uj x [ti, tj+1],
such that the extended maps satisfy the Lagrangian seam conditions

Vp E Ui n Ui+,, s E [s2, s] (2.18)

Indeed, use Step 2 to define the maps ai on the slices U x {tj}, then use Step 3 to extend
ai to all of UJ x [s2, S1].

Since WO, W1, W2 are closed, Stokes' theorem yields the following:

E(v; [s2, si] x R/Z) E E
iE{1,2} je{O,1,2,3}

f U 8jjOj*j K C
iE{1,2} jE{1,2,3}

where in the first inequality we have used the seam conditions (2.18), and in the second
inequality we have used the isoperimetric inequality for the symplectic area [McSa, Theorem
4.4.1]. Taking the limit as s2 goes to -oo and applying Lemma 2.1.3 yields the conclusion
of the lemma.

Throughout the final two steps, the constants Ci will depend only on the geometry of
Loi, L 12 .

Step 2. There exist C > 0, ,o > 0 so that if uo, O1, -2, U3 are smooth maps with

a- : Ai -+ Mi, K:= max diam -i (Ai) < Ko,
ie{O,1,2,3}

then there exist extensions ai: U -+ Mi of -i such that:

(aj(p), ji+j(p)) E Lj(j+1) Vp E U U+,
max f(ailaui) + max diamai(Ui) <Ci.

ie{O,1,2,3} iE{O,1,2,3}
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(0-i (pi(i+l)), 9i+j (pi(i+l))) E Li(i+), I

(ai (p, s), ai+l (p, s)) (E Li(i+1)

(O-j(Pj(i+j))j oj+j(Pi(i+1))) E Lj(j+1),



The points

Z' :=(o(p30), 03(p30), 0-3(p23), U2(P23))

lie in L0 1 x L 12. Since the intersection (Loi x L1 2 ) n (Mo x AM 1 x M2 ) defining Lo1 x M, L 12

is transverse, there are points x, x' E Loi x M1 L 12 that are close to z resp. z',

dMo1 2 (X, z) C1K, dMo112 (X Iz') <01K,

for a uniform constant C1 > 0. The triangle inequality bounds the distance between the
projections of z, z':

d M02 (7o2 (x), 702(X')) dM02 (7o2(X), 7 02(Z)) + dM02 (7ro2(z), 7o2(z')) + dM02 (7o2(z ), 7O2(X'))

<2(C1 + 1)K.

As long as Ko is chosen to be small enough, it follows from Lemma 2.1.9(ii) that there exist
lifts y, y' E L0 1 X M1 L 12 of a single point yo2 E Lo1 o L12 with small distances to z resp. z':

dMo,12(Xy) C2K, dM0112 (W y') 0 C2K,

where C2 > 0 is another constant. We can now define the extensions ai at the origin:

(Ro(0), 1(0), a1(0), 2(0)) := Y,

Inequalities (2.19) and (2.20) and the triangle inequality yield:

dM0112(y, z) (Cl + C2)K, dMo112 (y' z') < (C0 + C2)K'

The local triviality of smooth submanifolds implies that there exists a constant C3 > 0
such that after redefining Ko if necessary, we may extend the maps ai to the set {(a, b) E
B(0, 1)1 b = a} such that the seam conditions (2.18) hold and the length of the loop aiIau,
is bounded by C3K. Once more redefining Ko if necessary, we may extend each map ai to Ui
in such a way that the diameter of ai(Ui) is bounded by C4K for C4 > 0 another constant.

Step 3. There exists A > 0 such that the following holds. Assume that O-O, U1, o2, 03 are
smooth maps and a < b are real numbers with:

oui: Aix [a,b]UU x{a,b} -+Mi, max diam im -i ! A,
iE{O,1,2,3}

(o-i(q), oi+l(q)) E Li(i+1 ) V q E (pi(i+1) x [a, b]) U ((Ui n Ui+1) x {a, b}).

Then each o-i can be extended to a smooth map ai: Ui x [a, b] -+ Mi such that the following
seam conditions hold:

VqE (Uo n ui) x [a, b].

Define x, x', y,y' E Loi xM1 L 12 like so:

x :=(0-0, U-1, (i, -2)(0, a),
y := (0o, u1, o-1,o-2)(0, b)

':= (o,0, 3 , (73, u2) (0, a),

y' := (O, 03 03, ,2) (0, b).
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(2.20)

z := (O-O(POi), oi(POI), oi(P12), (-2(P12)),

(aO (0),1 a3(0),7 33(0), a2 (0)) : = y'.

(ai (q), I i+1 (q)) E Li(i+1)



Then 7ro2 (x) = 7ro2 (x') and r02(y) = ro2(Y'), and x resp. x' are close to y resp. y':

dMo 112 (x, y) < 4A, dMo 11 2 (W)Y') < 4A.

It follows from Lemma 2.1.9(i) that as long as A is chosen to be small enough, there exists
a path Y02: [a, b] -+ L0 1 o L 12 and lifts y, y': [a, b] -+ Loi X M1 L 12 from x to y resp. from x'
to y' of small lengths:

for C > 0 a constant. Define a, al, a2, a3 on {0} x [a, b] like so:

(aO, i 1 al , i l 2) (0, t) : = -Y(t), (aO, 3, a3, i 2)(0,1 t) := ' M' )

The diameter of the loop (Jo, a1)|a((uonUi)x[a,b]) is bounded by 2(C5 + 1)A, so by redefining

A if necessary, we may extend (Jo, al) to a map (Uo n U1 ) x [a, b] -+ M÷- x M1 with small
diameter:

diam ((Jo, JI)((Uo n U1 ) x [a, b])) C6 A

for C > 0 a constant. Extend (a1 , a 2 ), (a2 , 3 ), (a3, Jo) to (Ui n U2 ) x [a, b], (U2n U3 ) x [a, b],
(U3 f Uo) x [a, b] in the same fashion. Finally, aiIa(Uix[a,b]) is a map to Mi from a domain
homeomorphic to S2 , and its diameter is small:

diam (ai(a(Uj x [a, b]))) (2C6 + 1)A.

Redefining A if necessary, we may extend ai to all of Uj x [a, b].

2.2 Convergence modulo bubbling for strip-shrinking

The proof of Gromov Compactness Theorem 3.3.1 relies on Ck-compactness in the presence

of a uniform gradient bound. This result is based on a strengthening of the strip-shrinking

analysis of [WeWo4j from H2nWl' 4 -convergence to Ck-convergence; we also allow the domain
to be equipped with nonstandard complex structures and the geometric composition L01 o
L 12 to be immersed, rather than embedded. The purpose of this section is to establish
convergence mod bubbling in Theorem 2.2.1, deferring the 6-independent Sobolev estimate
Lemma 2.2.8 to 2.2.2.

Fix for 2.2 closed symplectic manifolds M0 , M1, M2 and compact Lagrangians
Loi C M6- x M1 , L 12 c M- x M2 with immersed composition as defined in the
beginning of 2.1.

For convenience, we will denote by (Mo 2 , W0 2 ), (Mo 21 1, W0211) the symplectic manifolds

(Mo2 11 , W0 21 1) := MO x M2j x MT x M1 = (Mo x M2 x M1 x M1 , WO G (-W2) ( (-W 1 ) G w 1 ),

(Mo 2 , W02) := M- X M2 = (Mo X M2 , (-Wo) G W2)

and by (Loi x L12 )T C M02 11 the transposed Lagrangian gotten by permuting the factors

of M0 2 11 by (Xo, X1, y1, x2) F4 (Xo, x2, X, 1 ).
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The notion of "symmetric complex structure" in the following theorem will be defined in

2.2.1.

Theorem 2.2.1. There exists e > 0 such that the following holds: Fix k E N> 1 , positive

reals 6 -+ 0 and p > 0, symmetric complex structures j' on [-p, p] 2 that converge C' to j'
with ||ji - illco < e, and CkJ 2 -bounded sequences of domain-dependent compatible almost

complex structures JK [-p, p] 2 
-+ J,(M,wE), f E {0, 1, 2} such that the Ck+1-limit of each

(Je') is a compatible C' almost complex structures Jr: [-p, p] 2 -* J(M, w,).
Then if (v', vi', v') is a sequence of size-(u, p) (Jo', J{', J2, j') -holomorphic squiggly strip

quilts for (Lo1, L 12 ) with uniformly bounded gradients,

sup IdvI(s, t) < oo,
VEN, (s,t)E[-p,p]

2

then there is a subsequence in which (vv(t - 6")), (v |t=o), (v'(t + 6")) converge Cc to a

(Jor, J2, i)-holomorphic size-p degenerate strip quilt (v1, v', v2) for L0 1 X M1 L 12 .
If the inequality liminf_,Oc [pp 2 |dv"I(s, t) > 0 holds, then v', v' are not both

constant.

The analysis in our proof of Theorem 2.2.1 will be phrased in terms of pairs of smooth

maps (wo2, W) = ((wo, W2 ), (wO, 2, ', W1)):

w02: (-p, p) x [0, p - 26), -+ M0 2 , W: (-p, p) x [0, 6] -+ M0 2 11 , (2.21)

(wo2,i)(, 0) E AM0 2 X AM 1 , w(s, 6) E (LO1 x L 12 7 Vs E (-p,p),

where 6 is nonnegative. From now on we denote the domains of w0 2 and iO by

Qo2,S,p := (-p, p) X [0, p - 26), Q6,p := (-p, p) X [0, 6],

and combine them into the notation Qs,p := (Qo2,6,p, Q6,p). We denote the closures in R2 by

Q[2,6,p := [-p, p] x [0, p - 26], Qjp := [-p, p] X [0, 6].

For 6 > 0, p > 0 (resp. 6 = 0, p > 0), the setup (2.21)6,p is equivalent to a triple of smooth
maps (vo, v 1 , v2) with the same domain and targets as a size-(6, p) squiggly strip quilt for
(Loi, L 12 ) (2 .8 )f=j (resp. as a size-p degenerate strip quilt for L0 1 X M1 L 12 (2.11)) and that
fulfill the seam conditions (2 .9)f=6 (resp. (2.12)) but are not necessarily pseudoholomorphic
or of finite energy. Indeed, given such (vo, v1 , v2), define (w02, W-) like so:

w02(s, t) := (vo(s, -t - 26), v2(s, t + 26)), (2.22)

i(s, t) (vo(t - 26), v2(s, -t+26),v(s,-t), v(s, t)).

Conversely, for 6 > 0 and (wo2, ') satisfying (2 .2 1) ,p, define (vo, v1 , v2) satisfying (2 .8 )f=6,
(2 .9 )f=j (for 6 > 0) or (2.11), (2.12) (for 6 = 0) like so:

s w'(s, t + 26), -26< t < -6, W'(s, -t + 26), 6 < t < 26,
vo (st) := V2(S, t) :=

wo(s, -t - 26), t < -26, w2(s, t - 26), 26 < t,(wist) -6<t<0
V0, t) := ' ' (2.23)

W1 (s, t), 0 < t < 6.
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The transformations (2.22), (2.23) are inverse to one another.

The following proof of Theorem 2.2.1 uses several notions that will be defined in 2.2.1-
2.2.2.

Proof of Theorem 2.2.1. We divide the proof into steps: in Step 1, we show that the squiggly
strip quilts converge Co in a subsequence. In Step 2, we upgrade this convergence to Ck.
Finally, we prove in Step 3 that if the gradient satisfies a lower bound at a sequence of points
with limit on the boundary, then at least one of v' , v2 is nonconstant. Throughout this
proof, C1 will be a constant that may change from line to line.

Step 1. After passing to a subsequence, (vg(t - J')), (vlt=o), (v'(t + J')) converge Co to
a (Jo, J2, i)-holomorphic size-p degenerate strip quilt (v', v', v') for Lo1 X M L 12.

The ArzelI-Ascoli theorem implies that there exist continuous maps

vo : (-p, p) X (-p, 0] - M0, vi : (-p, P) -+ M1, V2': (-p, P) X [0, P) --+ M2

such that after passing to a subsequence, (vo'(s, t - J')), (v'It=o), (v'(s, t + 6")) converge
C to v1 , v , v2. Standard compactness for pseudoholomorphic curves (e.g. IMcSa,
Theorem B.4.2]) implies that this convergence takes place in Ck on the interior (i.e. away
from the line t = 0); in particular, v' resp. v are Jo'- resp. J2-holomorphic on the
interior, hence C by [McSa, Theorem B.4.1]. In fact, we claim that v' and v2 are C
on their full domains, and that they satisfy a generalized Lagrangian boundary condition in
L01 XM 1 L12 at t = 0.

Denote by T the map

T : = (Vo' (-, 0), V1' (-), V' (-), V2 (-, 0)): (-P, P) -+ M- X M1 X M - X M2.

To show that v', yr satisfy a generalized Lagrangian boundary condition in L01 o L12,
we will show that for any s E (-p, p), U(s) lies in Loi X M L12. The containment f(s) E
Mo x Am, x M2 is clear. To show the containment T(s) E Loi x L 12 , we will show that
(vo (s, 0), v (s)) lies in L01 ; the proof that (v (s), v2 (s, 0)) lies in L 12 is analogous. Since
(vo'(s, -J"), v'(s, -J')) lies in L01 , and since (v['t=o) converges Co to Vo, it suffices to show
that the distances d(v'(s, -J"), v'(s, 0)) converge to zero. This follows from the uniform
gradient bound on (v') and the convergence of J" to zero.

Let us show that v' and v2 are C'. We have already concluded that these maps are C
on the interior, so it only remains to show that they are C' at the boundary points, w.l.o.g.
at (0, 0). For that purpose we choose a neighborhood U C Lo, x m, L 12 of U(0) such that
1r021U: U -+ M0 2 is a smooth embedding. Then 7ro2(U) C Mo 2 is a noncompact embedded
Lagrangian, and since v' and y' are continuous we find e > 0 such that T((-e, e)) is
contained in U. Hence (v, v2 )((-E, e) x {01) is contained in 7ro2(U), so standard elliptic
regularity (e.g. [McSa, Theorem B.4.1]1) applied to the map (v' (s, -t), v2 (s, t)) shows that
v0 and v are C' at (0,0). Since 7r021U is a diffeomorphism onto its image, U is C' at 0
and thus we have shown that v', v0, y are C'.

Step 2. After passing to a further subsequence, the convergence of (v (s, t - 6")), (vj't=o),

(v2(s, t + J')) takes place in Ck.

The hypothesis of [McSa] that the Lagrangian submanifold is closed can be removed.
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In order to establish Ck convergence near (-p, p) x {0}, we cannot rely on [McSa, Theorem

B.4.2]. Rather, we will establish uniform Sobolev bounds for all three sequences of maps.

The compact Sobolev embeddings Hk+2 + C resp. Hk+1 _+ Ck for two-dimensional resp.

one-dimensional domains will then provide Cjko-convergent subsequences.

Set J" resp. jV to be the coherent pair of almost complex structures resp. coherent
collection of complex structures resulting from the transformations (2.30) resp. (2.29) applied
to JO', J1, J2' resp. j', and set (w' 2 , '") to be the (J, j)-holomorphic size-(Pv, p) folded strip
quilt resulting from the transformation (2.22) applied to (vg, v', v'). Then w' 2 resp. ii"ft=o
converge CO to

U02 (s, t) :=(v' (s, - t), v2 (s, t)) resp. U(s, t) :=(v' (s, 0), v2 (s, 0), v' (s), v' (s)),

where we have used the assumed Cl-bounds on (v"), (vv). Since (Jov) resp. (JIt=o) resp.

(J2) converge Ck+1 to J0 resp. J1 resp. J2, and since (JO), (Jf), (J2) are Ck+2-bounded,

(JOg 2 ) resp. (J"It=o) converge Ck+1 to J02 resp. J; since j" converges in C'e to j', the
components of j" converge in Cgc to a coherent collection j O of complex structures j'.

Fix p' E (0, p) and choose p > p1 > P2 > .'> Pk+2 = p'. Set upn to be the restriction
and extension to Q6,,p of u as defined in (2.33). Due to the Co,-convergence of w"2 resp.

i|t=o to uo2 resp. U and the uniform Cl-bounds on iw, we can express w"2 resp. w1 on

Q02,6,p1 resp. Q6.,6,p, for sufficiently large v in terms of the corrected exponential maps eU0 2 ,S

resp. ei6, and sections (('2, (') E r k + as introduced in 2.2.2:

02 = e6 02 ,P ((02), i" = ej (c).

The sections (0'2, f converge to zero in C0 as v -+ oo, are uniformly bounded in C', and
satisfy boundary conditions (2.34) in the linearizations of (Lo, x L12)T and Mo x Am, x M2 .

Iteration claim. We bound IID('vIliyl(,,| and | i(Q|| )for 1 E [1, k + 2] by in-

duction on 1, where FI1 and D' are the modified Sobolev space and the linear delbar operator

defined in 2.2.2 using P", j', and the pair of connections V = (V02 , V) constructed in
Lemma 2.2.4.

The first key fact for this claim is the formula

D("Vv = deu, ((v) - 1(D j,(eu6, ((v)) - Fv((")) : Gv((v), (2.24)

justified in (2.37), where Djvyj is the nonlinear delbar operator defined in (2.28). The
relevant fact here is that G' is a pair of smooth maps

GE2 : u$2 ,36TMo2 -+ u 2 , STM 2, G': iiT*,TM0 211 -+ ii7tTM0 211

that preserve fibers but do not necessarily respect their linear structure. Furthermore, for
any k, G' is uniformly bounded in Ck. The second key fact is Lemma 2.2.8, which is a
collection of 6-independent elliptic estimates.

Since C' is uniformly bounded in C 1 , I|("IIH1(Q,,, 1 ) and

IID (|VIIH1(Q6vp,) = |IG'((v)I|H'(Q, 1 )

are uniformly bounded. This establishes the base case of the iteration.
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Next, say that (" and Dc'. (" are uniformly bounded in H'(Q6a,, 1 ) for some 1 E [1, k+ 1].
Lemma 2.2.8 yields:

IK(V41+1(Q,5 1 ) < C1(llD(V-le (Q 6"P1) + II("IHO(Q6 ,,p)). (2.25)

It remains to bound lIP ~VI 1(Qad. Since (v is uniformly bounded in '+ 1 (Q6  )

it is uniformly bounded in C1- 1 (Q-,p1 +,) by Lemma 2.2.9, which allows us to bound

||DiV(VI||gi+1(QVP~)

(2.24) 1 Vz I IvAm

C1 V H(I )I IVAmOCCHQQP+

+ ~ ~ ~ ~ ~ ~ ( >I IVV1VV2) . VmCOHO(Q 6P+l))
.. \M~l,

jI(IH+1Q,11 + IIVM(VlICOH1(Q 6 ,,P1~1 ) + i
m=O

C1(I(OI 1+1(Q6VpI) + 1).

This, together with (2.25), establishes the iteration step and completes the Iteration Claim.

The uniform bounds on II(VIIk+jk+2(QP+2) and the Ck-bounds that result from Lemma

2.2.9 yield uniform bounds on Iw2 1Hk+2(Q6,k), 21 Hk+2(Qvpk+2)' and

11 'Wt=oIIHk+1((-pk+2 ,pk+ 2 )). These bounds induce uniform bounds on the Hk+2 -norms of

vV, vA on the relevant subdomains of (-Pk+2, Pk+2r and on the Hk+ '-norms of
Vl(-pk+ 2 ,pk+2 )x{o}. The compact embeddings Hk+ 2 -4 Ck resp. Hk+1 _> Ck for two-

dimensional resp. one-dimensional domains implies the desired Cjko-convergence of (vg(s, t -
Pf)) resp. (vv (s, 0)) resp. (vv (s, t + P")) to v' resp. v' resp. v'.

Step 3. We show that if for some f E {0, 1, 2} and r, > 0 the gradient satisfies a lower bound
odv(0,Trv) I n for some Tv -+ 7-o E (-p, p), then at least one of v', v2 is nonconstant.

In the notation of Step 2, it suffices to show that if for some 7v -+ r E [0, p) and K > 0
the inequality ldwv(0,r")I := Idwv2(0,Tr")I + IdiV(0,TV)I > K is satisfied, then u02 is not
constant. We prove the contrapositive of this statement: assuming that U 0 2 is constant, we
will show that the quantities limvso supteOP) Idw 2 (0, t)I and limysOo suptc[o,&] Idl7"(0, t)1
are both zero.

Since the convergence of (wv2 ) to u02 takes place in C1
1', the quantity

limV÷0 suPE E[,P) Idw' 2 (0, t)l is zero. To see that the quantity limo supte[o5V] Idi"(0, t)I
is also zero, note that by the last paragraph of Step 1, the limit U of ("V) is also constant,
which implies the formula dV = dei6 L, ((v)(V(L). It follows that to prove the equality

limy+OO supet[0,6] I Vi (0, t)j = 0, it suffices to prove the equality

limy+o, suptE[o,6v] IV(v(0, t) = 0. We can now estimate, using the Sobolev inequality

11 - IICo C111 - IIH' for one-dimensional domains whose lengths are bounded away from
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zero:

lim sup sup IV("(0, t)I < lim sup IV('(0, 0) + lim sup V(,(O t) -- V((O, 0)
V--+OO tE [0,6) V -+Coo tE [0,J-] 1/-+0 t E [0,6-

= lim sup I V"(0,t) -- V("(0, 0)I
V-+Coo t E [O,J]

< lim CifI tV v(Ot)Idt
V-+oo

" liM C1(v)1/ 2  v(O, t) 12 dt1/2

Sobolev 1/2
< lim C1(6")1/2|IIH3 = ) .

This completes the contrapositive of Step 3, which concludes our proof of Theorem 2.2.1. E

2.2.1 Complex and almost complex structures in the folded and unfolded
setups

Gromov Compactness Theorem 3.3.1 is proved by "straightening" the seams of a squiggly
strip quilt. Pushing forward the standard complex structure from the squiggly strip quilt
to the new quilt with horizontal seams produces a nonstandard complex structure, which is
symmetric under conjugation. We axiomatize this property in the following definition.

Definition 2.2.2. Fix p > 0. A symmetric complex structure on [-p, p]2 is a complex
structure j such that the equality

j(s, t) = -a 0 j(s, -t) 0 a

holds for any (s, t) E [-p, p32 , where a is the conjugation ac,& + oat F--+ a 8, - 0 3&t.

When a symmetric complex structure, almost complex structures, and a pseudoholomor-
phic squiggly strip quilt are "pushed forward" by the folding operation (2.22), the result is
a "coherent system of complex structures", a "coherent pair of almost complex structures",
and a "pseudoholomorphic folded strip quilt", defined as follows.

Definition 2.2.3. Fix 6 > 0 and p > 0.

" A coherent collection of complex structures j on Qj,p is a pair j = (jo2, j) =

((jo, i2), (is, 2 ii, i)), where jo, j2 (resp. j', j', j', ji) are complex structures on QO2,6,p

(resp. on Q6,p) such that the following equalities hold for all s E (-p, p):

je(s, 0) = -oa 0 j(s, 0) o , (2.26)
j6(s, 6) = j1(s, 6), j1(s, 6) = ji(s, 6), jj(s, 6) = -a o j'(s, 6) o a. (2.27)

" A coherent pair of almost complex structures J on Q6,p is a pair J = (Jo 2 , J),
where J02 , J are almost complex structures

J02 : -02,,p --+ J(M 2, W0 2), J: 6,p -+ J(Mo 21, Wo 21)

satisfying the following compatibility condition: Set t: M 2 -+ M 0 211 resp. 7r: M 0 21 -+

M0 2 to be the inclusion resp. projection. Then for any s E (-p, p), the following
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equality must hold:

J02 (s, 0) = -d7r o J(s, 0) o dt.

e Fix a coherent collection j of complex structures and a coherent pair J of almost
complex structures on Q6,. A (J,j)-holomorphic size-(6, p) folded strip quilt is a
collection of smooth maps w = (w02, W') = ((WO, w 2), (wo, W', W', w1)) satisfying (2.21)
that have finite energy,

fQ02, 20 2 < 00, f *wU0211 < 00,

and satisfy the Cauchy-Riemann equations

OJjW = (&02,J02,J02 wo2, 0z3i) = 0,

where 59 j = (502,J0 2 ,J0 2  ) is the pair of operators defined by:

a02,JO2 ,jO2 W02 := (dwo, dw 2) 0 (Jo, j2)(Ds) - J0 2 (-, W02) 0 (DswO, &9W2),

aj "W := (dwo, dw', dw, dwi) o (j, j', j, ji)(as) - J(-, W) 0 A w, 8w2 8sW",8321)
(2.28)

Given a (Jo, Ji, J2 , j)-holomorphic squiggly strip quilt (vo, v1, V2) with j symmetric, we can
produce a folded strip quilt like this: Define a coherent collection j of complex structures by

jo 2 (s, t) = (jo, j2 ) (s, t) := (-c o j(s, -t - 2) o a, j(s, t + 2J)), (2.29)

j(s, t) = (j, jj, ji) (s, t) := (j(s, t - 23), - o j(s, -t + 26) o o, -a o j(s, -t) o o-, j(s, t))

and a coherent pair J of almost complex structures by

Jo 2 (s, t) := (- Jo(s, -t - 26)) G J2(s, t + 26), (2.30)

J:= Jo(t - 26) D (-J2(-t + 23)) D (- Ji(s, -t)) E Ji(s, t).

If (wo2, W') is defined by applying (2.22) to (vo, vi, v2), then (w02, @) is a (J, j)-holomorphic
size-(J, p) folded strip quilt. Indeed, (w02, i') have the correct domains and codomains
and satisfy the seam conditions, as discussed earlier, and the finite-energy hypothesis on

(vO, v1, V2) implies that (wo2, W-) has finite energy. The Cauchy-Riemann equation (2.10) for
vo on (-p, p) x (-p, -26] can be rewritten as

dwo(s, t) o (-o o j(s, -t - 26) o a) - (-Jo(s, -t - 26, wo(s, t))) o dwo(s, t) = 0

for wo(s, t) := vo(s, -t - 23) as in (2.22), so wo is (-Jo(s, -t - 26), jo(s, t))-holomorphic on

Qo2,6,p. Five similar calculations complete the check that (w02, ') is (J,j)-holomorphic.
Finally, we consider the coordinate representation of a coherent collection of complex

structures. Fix a coherent collection j = ((jo, j2), (jO, , j2' , ii)) of complex structures on
Qbp. Define ao(s, t), co(s, t) E R by

jo(s, t)(a8 ) =: ao(s, t) 8 + co(s, t)&a, (2.31)
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and define aj (s, t), cj (s, t) for j E {1, 2} and a' (s, t), c' (s, t) for k E {0, 1, 2} in the same

way. Then (2.26) and (2.27) translate into the following conditions on these coefficients:

aj (s, 0) = -a(s, 0), c (s, 0) = c (s, 0) Vj E {0, 1, 2}, (2.32)

ao(s,6) = a2(s, 6), a' (s, 6) = ai(s, J), ao(s,6) =-a'(s,

co(s,) = c2(s, 6), c' (s, J) = c,(s,6), co(s,6) =c'(s,6).

We will use this coordinate representation in 2.2.2.

2.2.2 A collection of strip-width-independent elliptic estimates

This subsection is devoted to proving Lemma 2.2.8, which is the crucial 6-independent elliptic

estimate needed for the proof of Theorem 2.2.1.

In addition to the data fixed at the beginning of 2.2, fix for 2.2.2 p > 0 and a
pair of maps u = (u02, J) satisfying (2 .2 1)6=o,p.

Furthermore, we continue to denote by i the standard coherent collection of complex struc-
tures, and for any 6 E (0, p/4] we define a pair uj = (u02,6, Us) of smooth maps satisfying

(2.21)6,p by:

U02,6 := u02Q02, 6 , U6 (s, t) := U(s). (2.33)

Our approach is inspired by [WeWo4], but we deviate from that approach by working

with a special connection which allows us to drop boundary terms from the H2-estimate

[WeWo4, Lemma 3.2.1(b)]. This special connection is constructed in the following lemma,
which is a generalization to the immersed case of a connection constructed in [We5].

Lemma 2.2.4. There is an assignment 6 -4 V6 = (V 02 ,6 , V6 ) that sends 6 E (0, p14] to a

pair of connections V0 2,6 resp. V 6 on u*2, TMo2 -+ Q02,6,p resp. U7jTM0 211 -+ Q6,p such that

the following hold:

" Parallel transport under V 6 preserves U7T (Lo1 x L 12 )T and u-*T(Mo 2 x AM 1 );

" For a section [ E '(U-*T(Mo 2 x AM1 )) we have V0 2,5,(p 0 ) = p, oV6 ,8 , where
p: U*T(M 2 x AM) -+ u*2, 6TMo2 t=o is the projection;

" For 61 < 62, the restrictions of V 1, V 62 agree:

V0 2 ,51 I Qo2, 2,P = V 02 ,52, V6 21Q = V 61.

Proof. Fix metrics on u0 2TM 2 and 7!*TM0 21 1 so that given a smooth subbundle, we may

form its orthogonal complement. For any fixed s E (-p, p) we denote:

A0 21 1 := T(s)(Lol x L 12)T, A := TU(,)(Mo 2 X AMi),

A02 := A0211 n A, A02 := T7ro2 ,(,) (A 0 2 ).

The transversality of L0 1 x L12 rh Mo x Am, x M2 implies A 02 = Tu(,)Lo 2 , so the pro-

jection from A 02 to A0 2 is injective (see e.g. [WeWo4, Lemma 2.0.5]). Hence the in-

tersection of A 0 2 and {0} x T(E1(8 ),E1(8 ))AM1 is trivial. It follows that if we let Ci de-

note the complement of A02 + ({0} x T(U1(s),U1 (S))Am1) in A, the diagonal decomposes as
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A = A0 2 G CI ( ({O} x T(u 1(8),u 1(,))AM1 ). Let C2 be the complement of A0 2 in A0 2 11.
Transversality implies Tu(,)Mo 211 = A 0 2 1 1 + A, so we have deduced the following decompo-

sition:

Tuts)Mo 211 = C2 ( A0 2 e C1 e ({0} x T( 1( s), 1 (s))AMi)'

The subspace A0 211 (resp. A) is given by the sum of the first two factors (resp. the sum

of the last three factors) in this decomposition. Therefore, if we choose connections on

each of these four subbundles and set V to be the product connection, then extend V to a

connection V6 on i6TM0 211 -+ Qj,p by defining V 6,,((s, t) -+ ((s, t)) := V,(s 4 ((s, t)) and

defining V 6,t((s, t) - ((s, t)) := V ,t(t - ((s, t)) in terms of the Levi-Civita connection V ,
Vj satisfies the first bullet.

Denote by p: U*T(Mo 2 x AMi) --+ u 2 TMo 2It=o projection and by i: u02TMO2t=o -
u02T(M 2 x AM1 ) the inclusion defined by sending v E Tuo2(8 ,o)Mo2 to (v,0) E Tw(8 )(Mo 2 x

AM1 ). Define a connection p*V on u02 TMo 2It=o by (p*V)((o2 ) := poV(io(0 2 ). Extend p*V
in any way to a connection V0 2 on u02 TM 2 ; for J E (0, p14], define V 02 ,6 := V02IQ 02,6,p. The

second bullet now follows from a computation, in which ((02, (i, (i) is an arbitrary section
of U*T(Mo 2 x AM):

p 0 V 6,( = p 0 V5,((o 2, (i, (1) = p0 V 6 ,5(i o p 0 ) + p a V 6,s(0, 1, (1) = Va2,6,s(P )

The term poV3,,(0, (1, $) in the third quantity vanishes since the subbundle {0} x T( 6 ,l 6 )AM1

is preserved under parallel transport by V6 ,s. l

We will use the connections V6 just constructed throughout the rest of 2.2.2. Due to the
third property in Lemma 2.2.4, it is unambiguous to drop the subscript and refer to V5
simply as V. Note that this pair of connections induce connections on the pullbacks by U0 2,6
or U6 of any tensor bundle of TM0 2 or TM0 21 1 in a canonical way.

Before we state the elliptic estimate Lemma 2.2.8, we need to define our function spaces
and delbar operators.

Definition 2.2.5. Fix r E (0, p), 6 > 0, and k > 2. Define the space of sections r k(Qr)
and the norms 11 - IIHk(Q6 r), I - IlIk(Q6 ,) as follows.

* Define r k(Q 6 ,r) by:

irk(Q6,r) : (02 E Hk(Q0 2,6 ,r, U*2 6 JTMo 2 ),U5 ~ ~ E Hk (Q6,r, U TM0211)I

where (2.34) denotes the following linearized boundary conditions:

(602(S, 0),(S, 0)) E TAM 2 x TAM 1 , ^(s,6) E T(Loi x L 12 )T V s E (-r, r).
(2.34)
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. Define two norms IHk(Q6,r), 11 - fjk(Q5,r) on r by:

S(602, f) IHkA(Q6 H) := IIO2IHk(Qo2r,, 2,TMo 2 ) H I(Q5,r*TM0211)'

k-2

II(6o2, If2Q ~ = II(62, )1IHk(Q 6 ,) +( 2, V')IIcOH1(Qs,,)
1=0

112 ~ k-2 t 1

= (62 ) H (Q + Y ( sup 1V026 2(-, t)IIH1((-r,r),uo2 ,(-,t)*TMo 2 )
,r _ tE[O,r-26)

+ sp| (-, )H1((-r,r),is(-,t) *TM021)'

Note that | -|pk(Q 6 ,) is a well-defined norm on Fr 6 (Q6,r) due to the embedding H1  C0

for one-dimensional domains. However, the constant in the bound IC-((Q) (, r) I-
IIHk(|Qr) is 3-dependent.

In [WeWo4J, Wehrheim-Woodward introduced an exponential map with quadratic cor-
rections, which allowed them to treat the Lagrangian boundary conditions as totally geodesic.
Wehrheim-Woodward assumed the composition L0 1 o L 12 to be embedded, but their con-
struction of the corrected exponential map only used the immersedness of that composition.
We may therefore import their corrected exponential map into our setting:

Definition 2.2.6. Given r > 0 and 3 > 0, define the corrected exponential map eu6
and its linearization deu6 and s- and t-derivatives as follows.

" Let eu6 = (e 02,5, ega) be the pair of maps defined in [WeWo4, Lemma 3.1.2]; eu6
sends ( F (Qr) with Ij(j|Co(Q6'r) sufficiently small to a pair of maps eu,(') =

(eu 02, 6 ((02), ei, (')) satisfying (2.21).

* For P02 E u*2 6TMo 2 |(,,t), deU 026(p02): u 2,6TMo 21(s,t) -+ Te,, 2 ,(po 2 )M2 is defined by

including the fiber u*2 ,TMo 2 1(s,t) into T U2 * 2 ,6TM0 2 as the vertical vectors, then
postcomposing with the tangent map T(e 0 2 )p 2 : T U2 * 2 6 TM2 4 Teu0 2 ,(p 0 2)M02.

The linearization deii,(y) is defined analogously.

* For P02 E u02,6 TMo 2 (s,t), define DSewo 2 (Po2) E Tewo 2 (po2 )MO2 to be the vector got-
ten by choosing a flat section - of w*2 TMo2(s-E,s+E)x{t} for E small, then setting
DseW, 2 (Po2) := Ts(ew(o-))(0s). The derivatives DteW 2(P2),Dses(y),Dtes(y) are de-
fined analogously, and each of these derivatives depends smoothly on the argument

P02 or 5.

This exponential map will allow us to define fiberwise complex structures in the following,
which are parametrized by vector fields rather than by maps.

In the following definition of the linear delbar operator, we must go into coordinates.
Fix J > 0 and a coherent collection j = ((jo, j 2), (jO, , j1i)) of complex structures on

Q6,. Then j induces via (2.31) two pairs of endomorphisms A = (A 0 2 , A), C = (C02, C)

of u 2 ,TM 2 , U'*TM0 211 , with C02, C defined as follows and A 0 2, A defined in analogous
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fashion:

C02(s, t): T, 0 2,6 (s,t)M2 -+ TU0 2,(s,t)Mo2, (VO, V2) -+ (co(s, t)vo, C2(S, t)v2), (2.35)

5(s, t): Tgaj(s,t)M0211 -+ Tij6(s,t)M0211,

(V , 6 ) i V/ /VI) - (c' (s, t) V, , C'(S, t) V, , C'(s, t) V, , c,(s, t) VI).

Note that the conditions (2.32) (which are equivalent to the coherence conditions (2.26),
(2.27)) imply that for any s E [-p, p], the endomorphisms

C (S,6), C02(SA X (1(u',u')-TM02)(S,0), (Q(2,,,u).T11,)(Si,0)

are scalar multiples of the identity; we will use this fact later in 2.2.2.

Definition 2.2.7. For 6 > 0, r > 0, k > 2, a coherent collection j of complex structures
and a coherent pair of almost complex structures J on Q6,r, and E 12 (Qjr), define

the linear delbar operator DC to be the following map from H1 (Q02,6,r, U0 2,6 TM 2 ) x

H1(Q 6,r, iTM02 11) to H0(u$2 ,6TM 2 ) x HO(G-TMO21):

DC( :=AVS( + CVt( - J( )Vs(

(Ao 2Vo 2,s(o2 + C02 702 ,t( 02 - J 02 (6o2)VO 2 ,s(02 , AVs + CVt - J( )Vs(,

where J( ) is the pulled-back complex structure

J( (s,7 t) :=deus ( (s, t)) - 1J(s, t, eu6 (((sI t))) deus ( (sI t))

:=(deU02,( 02(S, t))-lJO2(S, t, U02,6( 02(S, t)))deUO2,1( 02(S, t)),

deii6 ( ̂ (s, t))-J (s, t, eii6(F^(S, t))) dei, ( (s, t))).

If ( = (02, ) is a pair of sections in P6 (Q6,r), we can write a8(e (()) and at(e,(() in terms
of deus, Dseu6 , Dteu6 :

as ( )) :=((eU02, (02)), as(ei(i))) := (deU02,1((02)(V2,s(o2)

+ DoeU 2 ,6 ((o 2 ), des (()(Vs,) + Dsesa(()),
(2.36)

(9t(esu6(()) :=(at(eU.2', ((02)), at (ei!(6 )): (deU02, ((02)(VO2,t(02)

+ Dteu02 ,6 (o2), de () (Vt() + Dteii ()).

This decomposition allows us to relate the delbar operator &jj from (2.28) with the linear
delbar operator DC just defined:

Jj (eu,())= As(eu,(()) + Cat(eu(()) - (s, t, eu,(())as(e (

= deu6 (()(AVs( + CVt( - deu6 (() 1 J(s, t, e(())deu,(()Vs() (2.37)

+ (A Deu6(() + C Dte J(cs) - eu6 (())Dseu(
deu6 (()D(( + F(().

The inhomogeneous term F depends smoothly on (, which is crucial for the proof of Theo-
rem 2.2.1.
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The following is the main result of 2.2.2. It generalizes [WeWo4, Lemma 3.2.1], which

bounds the H'-norm of C when the domain complex structure is standard.

Lemma 2.2.8. There is a constant e > 0 and for every Co > 0, k > 0, and r1 ,r2 with

0 < rl < r2 < p there is a constant C1 such that the inequality

IK(llflk+l(QSri) C1(IID('IIijk(Qr 2) + II(IIHO(Qr2)) (2.38)

holds for any choice of 3 E (0, ri/4], a coherent collection j of complex structures on Qjp
with lj-il|co < e and Iji -ICax{k,1 Co, a coherent pair J of almost complex structures on

Q6,p which are contained in a CMx{k,1} -ball of radius CO and which induce by (2.3) metrics

whose pairwise constants of equivalence are bounded above by CO, and a pair of sections

C E J'+ 2 (Q6,r2) with |I||lco < e, IBIcI1 < Co, and ||K||t(Qr 2 ) CO.

We begin by establishing 3-independent Sobolev estimates for elements of Frk(Q6,r).

Lemma 2.2.9. Fix Co > 0, k > 0, and r1 ,r2 with 0 < r1 < r2 < p. Then there is a

constant C1 and a polynomial P such that the inequality

IIVk IICOHa(Q6,r-) Cl (IIHk+2(Q 6,,) + IVk-1D(IICOH1(Qr))

(k-1 

k-2

E IIV'IICOHi(Q,,r)) yIIIIHk+1(Q&,r) + E (COH1(Q,r)
1=1 1=0

(2.39)

(where the term I|Vk-1DIICOH1(Q 6 ,r) is to be omitted when k = 0) holds for any choice

of 6 E (0,ri/4], r E [rl,r2], a coherent collection j of complex structures on Qjp with
Ii - iI|ck < Co, a coherent pair J of compatible almost complex structures on Q6,p which

are contained in a Ck-ball of radius Co and which induce by (2.3) metrics whose pairwise

constants of equivalence are bounded above by CO, and pairs of sections E, u 6 Ft2(Q6,r)
with ||t||ci < Co.

Here is the idea of the proof: [WeWo4, Lemma 3.1.41 is a uniform Sobolev inequality

for sections ( satisfying the linearized boundary conditions. Since the special connec-

tion constructed in Lemma 2.2.4 preserves the linearized boundary conditions, [WeWo4,
Lemma 3.1.41 immediately gives a bound on IVkiICOH1(Qr). To derive a bound on

IIVa(IICOH1(Q5,,) for a E {s, t}k, we trade indices using the operator D .

Proof. We prove this lemma in two steps: first, we prove a slightly different inequality,
which has terms of the form IIV'C(IcoH1 on the right-hand side. Then, we prove the desired

inequality by inductively removing these unwanted terms.

Throughout this proof, C1 and P will denote a 6-independent constant and 3-independent

polynomial that may change from line to line.

Step 1. We prove the following inequality:

k-1 k-1

IVk( IcOH1 1 Hk+2 + IVk-1 CICOH1 + P IIV' I ' Ec1)C H -
12.4=0

(2.40)
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We begin by proving the k = 0 case of (2.40), which is essentially a consequence of [WeWo4,
Lemma 3.1.4]. One modification must be made to that lemma: we must relax the hypothesis
that the composition L0 1 o L 12 is embedded to the hypothesis that this composition is
immersed. To make this modification, change the proof of [WeWo4, Lemma 3.1.4] like
so: instead of using [WeWo4, Lemma 3.1.3(c)], use the fact that for ( = (02, 1i, i) E

C (-,),U* TM021 ),

R1H1((-r,r)) 5 C1 (021H1((-,r,r)) + R 1 lHl((-r,r)) + 117O I2110H1((-r,r)))

where 7rI211 is the projection onto the orthogonal complement of the tangent space of (L01 x

L 12 )T. This inequality follows from the pointwise estimate Vi^ : C( 021+ (' - 1I+ 7r0211|),
which can be proved like [WeWo4, Lemma 3.1.3b].

Next, fix k > 1; let us prove (2.40) for this k. Let (, be sections in pk+2, and assume
that the other hypotheses of the lemma are satisfied. We will show that for every tuple
a = (al, ... , ak) {s, t}k, there is a polynomial P, so that the following inequality holds:

k-1 k-1

IVa(I|CoH1 < 1 Hk+2 + 1Ik-1DIICOH1 + Pa 1 IV COH1) ' E IV'7i1CoH)
l=1 1=0

We prove this by induction on nt(a) := #{m E [1, k] I am = t}.

nt(a) = 0. If a = (s,...,s), then since the special connection we have constructed
preserves the boundary conditions of pk+2, the desired inequality follows immediately

from the k = 0 case of the current lemma: ||VfCoH1 S V 1H2.

nt(a) E [1, k]. Let us prove the inductive step for some nt(a) E [1, k]. Write a

(a', am = t, s, . .., s). Using the assumed bound on j, we estimate:

IlV4l1CoH1 = VO,(C-l(D (Vk-n) - (A _ j( ))Vk-m+1())CoCH1

C1i(iVQ,D (V -()|CoHi + lIa'V -+1nCoH1 + llVa'(J1)COH1

m-2 m-2

I pk--m+1+1( CEH IIIj k-m+10)U~H+ l~krnI 11lCOH1 + lV(()k 11COHl)
1=0 I=0

Let us bound separately the five terms in the last expression.

V'D (7- ) 11CoH. We estimate:

Va'nDV((k-m) IICOH1
k-m-1

'H + S I 'V(s Vm-l( + aCV-m--VtCoH1
l=0

k-m k-m-1

+S IVQV,(J( ))Vk-m-1+1iCOH1 + S IIVa/(CV [V,, Vt]Vk-r-l-i lCoHl-
1=1 1=0

Let us bound each of the four terms on the right-hand side. The first term on the
right-hand side, |lVw'V-mD (I|CoH1, is bounded by |lVk-D lc(oH. Due to the as-

sumed bound on j, the term _~m-1 |VaV1(a+AV+-m-1(+ 8 C,7v-m-- 1 )Vt()ICoH1
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is bounded by a constant times Ek- IIV'(I|COH1- To bound the term

k-m

VaV(j( )),7k-m-1+1( 1lCOH1 ,

observe that the assumed bound on J yields:

YS
03,Y O,

15+'v=k- 2

k-1

1 1 CH1

(In the last inequality we have used the Banach algebra property of C0 H1 .) Finally, the
curvature of V is a tensor, so the term -om Iv'(cV([V, s-

can be bounded by a constant times 2- I |CoH1-

IVa'k-m+lC H1. By the inductive hypothesis, this term is bounded appropriately:

||VV k-m+1lIICOH1 Cl ( IICIHk+2 +
IlVk-1D 'DIICoH1 + P(a',s,...,s)

k-1

11 11C H 1 X
1=1

k-1

x E1v (iICOH1
1=0

To bound this term, it suffices to bound ||J( )V0 '/k m+(llCoH1

and IV'3+1(J(0))V +1(IICoH1 separately, where in the second term # and y are non-
negative integers with 3 + y = k - 2. The quantity IIJ()Va'V -m+(11COH1 can be
bounded using the Banach algebra property of C 0H1 , the assumed C-bounds on , and
the inductive hypothesis. Using the Banach algebra property of C 0H1 , the quantity

1+1(J( ))pY+'11COH1 can be bounded by P (_k-1 IIV'COH) ' V1 CH1-

Ik-m++1(UCOH1- This term is already bounded appropriately.

m- 2

S IIVI(J(()Vk-m+1) COH1. By the Banach algebra property of C 0H', this term is bounded
1=0

by P (z_-2 ||V||CoH1) Z' f1 =IV'CII -

This establishes the inductive step, so we have proven (2.40) for all k > 0.

Step 2. We prove (2.39) by induction on k.

As in Step 1, the k = 0 case follows from [WeWo4, Lemma 3.1.41. Next, say that (2.39)
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,(j( )Vk-m+1()liva S 11COH1



holds up to, but not including, some k > 1. By (2.40), we have:

||Vk( ICoH1 < C1 C (Hk+2 + IVk-1D(IC0H1 + p (kVi CH coH1) ' V11COH1)

Replacing the sum Eik_ I~V'|COH1 appearing in the last term using the inductive hypoth-
esis finishes the inductive step. El

We now turn to the proof of Lemma 2.2.8. Here is our strategy: in Lemma 2.2.10, we

bound 111H1 in terms of |I0LHo and ID(OHo, for ( supported in Q6,,. In Lemma 2.2.11, we

use Lemma 2.2.10 to bound II77Vk(11H1 in terms of I(11j|k and IIDg((jjk, where rj is supported
in Q02,6,r and ( has arbitrary support. Finally, we use Lemma 2.2.11 to prove Lemma 2.2.8.

Lemma 2.2.10 (elliptic estimate for k = 0 and ( compactly supported). There is a constant

e > 0 and for every Co > 0, k > 0, and rl,r2 with 0 < r1 < r2 < p there is a constant C1
such that the inequality

IIVT IHO(Q ,r) C1(IIDC(1IHO(Qr) + IICIHO(Q6r)) (2.41)

holds for any choice of 6 E (0, r1 /4], r E [r1, r2], a coherent collection j of complex structures

on Q6,p with ||j - ilico < e and 11j - ilIc1 < Co, a coherent pair J of almost complex structures

on Q6,p which are contained in a C1 -ball of radius Co and which induce by (2.3) metrics whose
pairwise constants of equivalence are bounded above by C0, and sections I F ' & (Q6,r) with

I1Ijco < E, jj 1jji < Co, and Supp (o2, supp( compact subsets Of Q02,6,r, Q6,r.

Proof. Throughout this proof, C1 will denote a 6-independent constant that may change
from line to line, and A = (A 0 2 , A), C = (C02, C) will be the endomorphisms of u*2 6 TMo 2
and i*TM0 211 defined in (2.35).

We begin by fixing convenient metrics on Mo2 and Mo2 , that will be used for the
pointwise norms in the definition of the Sobolev norms. Via (2.3), J induces fiberwise metrics

g02, on u*2 6TM0 2 and i7 TM0 21 1 . In this proof, however, we will use the pullback metrics

9C = (go2,C, ') of go2, under denO2,6 ( o2 ), deil(^); note that gC is J( )-invariant. If we pick
e > 0 to be sufficiently small, then de,, ( ) is Co-close to the identity, and hence the induced
norms 11 - IIC,Hk on F 6 (Q6,r) are equivalent to the standard norms 11 - IIHk = 11 - IIO,Hk.

With these metrics we calculate for , F compactly supported and E E F satisfying

IjIICo(Q 6,r) e and IIVfI|co(Q6_) < Co:

III(11,HO = fQ6, ((IVS(12 + AVs(12) + 2gC(AV 8 (, CVt() + ICVt(i1) dsdt

+ f ,(g(CVs,9 J( - gC (CVt(, J( )Vs()) dsdt.

(2.42)

Let us estimate the two integrals on the right-hand side separately. We begin with the first
integral:

Q6 ((IVs(12 + IAVs(1) + 2g (2AVX, 1CVt() + ICVt(1 ) dsdt (2.43)
AM-GM

> f Q6 ((I Vs(1 - 3IAVs(12) + IICVt(j1) dsdt > jiIV(11,Ho,
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where the last inequality follows from the hypothesis Iij - ill < c as long as E is chosen small

enough.

To bound the second integral on the right-hand side of (2.42), we first derive a convenient

formula for its integrand:

g9(CVs(, J()Vt) - g (CVt(, J()VS() (2.44)

= (g8 (g4(C(, J()Vt)) - (VSgC)(C(, J()Vt) - g((VSC)(, J( )Vt)

- g(C(, V(J())Vt() - gC(C(, J( )VsVt ))

- ((g(C(, J()Vs)) - Vt(g)(C(, J()Vs) - gC((VtC)(, J()VS()

- gC(CC, V(J())VS) + g(CO, J()[VS, VO() - gM(C(, J()VSVt))

- (g((VSC)(, J()Vt() - g9((VtC)(, J()VS()) - gM(C(, V(J())Vt - V ()S

- g (C(, J( )[VS, Vt]().

We can now use Green's formula and the assumed Cl-bounds on j, J, and to bound the

second integral on the right-hand side of (2.43):

f Q6" (gC(CVS(, J( )Vto) - gM(CVt, J()VS()) dsdt

(2f4) (-rr)xo{g(C( J( )Vs8 ) dsdt - f(-r,r)xfl (, J(C)V-9) dsdt (2.45)

f f r ((VsgC)(C(J(")Vt() - (VtgC)(CC, J( )Vs()) dsdt

- Q, (gC((VsC)(, J( )Vt() - gC((VtC)(, J( )V,()) dsdt

- Q6,9r4(C(, VSJ())Vt - Vt(J())VC) dsdt - fQ6 gC(C, J(')[VS, Vt]() dsdt
AM-GM

S- ,r CiI(KK + IVI(I) dsdt > - IIV'II ,HO - ClllIIC,Ho,

where in the first inequality we have eliminated the integrals over the t = 0 and t =
6 boundary via the coherence condition on j and the fact that g((, J( )Vs()t=o and

C J( )V 8)= vanish. Indeed, J()Vso)t=6 vanishes by the Lagrangian bound-

ary condition:

(f, J( )Vs)g(t=J = W0211(dea,( )(, J(eii,(I)) 2 des ( ) V,)|t=s

=-W021(dei,( )(,dei,( )VO)t=b = 0,

where we crucially used the fact that both the exponential map deil(,) and the connection V

preserve T(Loi x L 1 2 )T. The boundary term g((, J( )Vs)t=o vanishes due to the facts that

deu,( ) preserves TAM 2 x TAMl, V satisfies Vo2,s(o21t=o = p o Vs(t=o for p: M0 21 -+ Mo 2

the projection, and Wo2, W0211 satisfy W0211 TM 0 2 XTAmi = -P*W02:

(C, J( )Vs()(t=o = -wo2(deO 2,6 (o2)(o2, de 02 ,6 (o 2)Vo 2,s(o2) It=o

- wo211(dei 6( )(, dea,( )Vs )It=o

= -wo 2 (deu0 6, (62)(P o ), deU02,6(o2)(P o 0))|t=O

+ p*Wo2 (deii6(I), dea,( ) sV)t=o = 0.
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Combining (2.42), (2.43), and (2.45) yields the following inequality:

IID(I(,HO - 8 ,HO - C1 ,HO'

Adding Ci 112o to both sides of this inequality and taking the square root of the result,
we obtain:

IIV,(IIHo C1(IID(II1Ho +11 ( o) 1/2  Cl(JD(1I|,HO + I(1II,HO).

In this estimate, we may replace 11 - 11,HO with 11 - IHo by using the 6-independent uniform
equivalence of these norms, which yields (2.41). D

Lemma 2.2.11 (elliptic estimate for k > 0). There is a constant 6 > 0 and for every

Co > 0, k > 0, and 0 < r1 < r2 < p there is a constant C1 such that the inequality

1177Vk( IH1(Q6,r) C1 (IIDIIak(Qr) + I k( (2.46)

holds for any choice of J E (0, r1 /4], r E [r1, r2], a coherent collection j of complex structures

on Q6,p with IIj - illco < e and Ii - ilCmaxfk,1> : Co, a pair J of compatible almost complex

structures on Q6,p which are contained in a Cmx{k,1}-ball of radius Co and which induce

by (2.3) metrics whose pairwise constants of equivalence are bounded above by Co, a pair of
sections k E Q2(Q 6,r) with ||(||co < c, ||(Ilc1 < Co, and |l|I Ip(Q 6 < Co, and a smooth

function q: Q02,J,r -+ R with ||7llck+1 < co and suppq C Q02,6,r.

Proof. Throughout this proof, C1 will denote a 6-independent constant and P will denote a
6-independent polynomial, and both may change from line to line.

We break down the proof into several steps: in Step 1, we establish (2.46), but with
an extra term on the right-hand side. In Step 2, we bound this extra term, using different
arguments in the k = 3 and k = 3 cases. In Step 3, we establish (2.46).

Step la. We prove the following inequality:

|IlVaIIH1 < C1 H (IIDIk + ll(IIHk + Z (2.47)

for a = (s,..., s).

k

Since the connection V preserves the linearized boundary conditions and q is supported in
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Q02,J,r, we may estimate ||qVk(IIH using Lemma 2.2.10:

I?|VII1H1 C1(IID(7V5)IIHO + 1177VS(IIHO)

= C+ (I70V8IIHo + --SVt()

k k

+ 7 (())-+ -5 C7Vl- [v, Vt] Vk-
_=_ 1=1

- (sq(A - J(()) + Catn)V HO)

<C1(||1cViIHk + II(IHk + HL5)

Step 1b. We prove (2.47) for a general multiindex a of length k.

We establish Step lb by induction on nt(a) := {#m E [1, k] I am = t}. Step la is the

base case for this induction. For the inductive step, fix a with nt(a) > 1, and write
a = (a', am = t, s, . . . , s). We estimate:

k-m

IIVQII1 jI?7 Va,,(Cl1(D),(V7kmO _ (A _ j(())V7krn+l())l
11777a(IIH1 s 8 C19 m-+11H1

C1(I1(KIHk + IIm7VaD (V rnO)IH1 + IVV7nm+1 1H1 + IIaV, (j(()Vkm+l1 IIHl)
k-rn

= C1 (|(|iHk + 17 (VkD( z (k m &.A-m-1+1( + + & CVnk-m- Vt

k-m k-m
- m-+1= 1t -m-l H

-m+1VcH, j a Vk-m+1(Hi
+ Ii~c~V~n 11IH1 + IiV J()vr+, IH1)

SIC(||L((||Hk Hk+ s(HO
/3 1,-/>O,

where in the last inequality we have used the inductive hypothesis to bound ||V1a ,V H+1

Step 2a. In the k $ 3 case, we prove the following inequality:

S 1 VO(O)'7"74|H C 1 1 Hk. (2.48)

It follows from the assumption k 0 3 that if 1, - > 1 satisfy + -y = k+1, then min{, y}

max{k-2, 1}. Furthermore, the assumption IKIlik Co implies the inequality l(KIck-2 < C1

by the embedding of H1 -+ CO for one-dimensional domains whose lengths are bounded away

from zero. This, along with the assumed Cl-bound on (, yields (2.48) in the k # 3 case.
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Step 2b. In the k = 3 case, we prove the following inequality:

S 17rV,3(J(O))V-Y'(I|HO 5 CI(J|D(ll3 + IKIll3 + 61/2f1 3( IIH3). (2.49)

0+ y=3

The assumed Cl-bound on ( implies that the only term in the left-hand side of (2.49) that
is not immediately bounded by C1||i|H3 is ||7V2 (j(H))VVS(iIHo.

Choose smooth maps

S,U: *TM0 -2 jU*hom((TMO 21 2 TMO21),

T: U-*TMo211 -+ * hom((TM0211)
3, TM0 211),

V: * TM0 211 -4 u* hom(TMo 21, TMo 21)

so that the formula

V2(=() =S()(V^) + T(()(V(^ VO) + U(()(V$) + V(() (2.50)

holds, where the maps S, T, U, V preserve fibers but may not respect their linear structure.
Since J is bounded in C 3 , S, T, U, V must be bounded in C1 . We may now use (2.50) to
bound the hat-part of IK7V 2 (j(())VVs HO:

117V 2(J())VVsIIHO Ci((H2 + IIS(()(V)2 VVSIIHO)
= C1 (I(IH2 + IIVS(S(()(rVk)V) - V2(S(()(17V ())V( (2.51)

+ S(^)(0 7
2 )[N, '7](I HO)

C1(I(|H3 + 3'/ 2 II(H)(rV 2 ) CoH)

Ci(I"IH3 + 61/2 2 COHl I ICoH1),

where in the last inequality we have used the 3-independent Banach algebra property of
C0 H 1 . By Lemma 2.2.9, 11V1ICOH1 is bounded by Ci(jID(Ijiq2 + II(IHO) and therefore by
Ci 1I(I1j3; on the other hand, the Cl-bound on S and the Cl-bound on ( implies the inequality

IIS()(rV/2 )CoH1 C110 2 1ICoH1. Substituting these inequalities into (2.51), we obtain:

|1rV2( JHO < H3 J 1/2  II V2 IICOH1) H3 + 6 1 /2  V2  I)COH).
(2.52)

Next, we use Lemma 2.2.9 to bound |IV2 11COH1:

IIrV2( CoH1 < C1((1 3 + CIV2(7)IH1)

C1(||'||H4 + IIVDC(?7)IICOH1 + ICIIif3) + PCIV(IlCOH1)(IlH3, + IDC(ICOH1)
(2.53)

C1(l|D((|| 3 + III 3 + 1hV3IIHO+ P(IIIIq 3)II IIF3
< C1(jDcIll 3 + II(ll 3 + 117V3 IIHl,

where the last inequality follows from the assumed bound on (l(la3. Substituting (2.53)
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into (2.52), we obtain:

'V2 (J(())V7slHo < C(IIj uH3 + J1 2 3(CIID + I1i1i 3  IIH1)) (2.54)

Ci(jDjC(|jg3 + It(jII3 + 6I/21 3 3IIH1

To bound the 02-part of I|qV 2 (J(())VV(1Ho, we use the the fact that the domains

Q02,6,r satisfy a uniform cone condition:

H6lder

0 2(P02 ((0 2 ))V02V0 2 ,s(02 1 HO) C 1 02(J02((02)) 1L4 02(11L4 (2.55)

< C1(1 + |I0iIH3)IIHIH3,

where the second inequality follows from the Sobolev embedding H1 - L4 for two-dimensional
domains satisfying a cone condition. Combining (2.54) and (2.55) and using the assumed
bound on 11(11,q yields the desired bound:

||7V2(J(())VVs( |Ho C1(|D((j|a3 + I|(Kjf 3 + 6 1/2I7Vk 3IHO)

Step 3. We prove Lemma 2.2.11.

The k 0 3 case of Lemma 2.2.11 is an immediate consequence of Steps lb and 2a.

Toward the k = 3 case of Lemma 2.2.11, let us show that there exists 6O E (0, rj] such
that (2.46) holds for 3 E (0, 6O]. Combining (2.47) and (2.49) yields the following inequality:

||gVk(||H1 - C1(||D(I|( 3 + ||(||f3 + j 1/ 2 qV(||H1). (2.56)

If we set 6o := min{(2C,)-2, ri}, where Ci is the constant appearing in (2.56), then (2.56)
yields the uniform inequality IfpV3 (IIH1 C1(IID)((jI5j 3 + IKIIJ3) for all JE (0,J6o.

It remains to establish the k = 3 case of (2.46) for 6 E [6o, r1 ]. To do so, we begin by
bounding |IV2 (j(())V 2 ( 1Ho, using the fact that the domains Qj,r satisfy a uniform cone
condition for 6 E [6o, ri/4]:

H6]der Sobolev
IIV 2 (J(g))V 2 (IIHo C11 1V2  L 4  2 L4 < C1(1 + Il411H2,4)Il(IlH2,4 (2.57)

< C1(1 + III|H3)1I(iIH3 < C1 (01H3.

Substituting (2.57) into (2.47) yields the k = 3 case of (2.46) for 3 E [6o, ri/4]:

1I7,V3( H1 < 1 (ID(IH3 + I101H3 + 11I7V(J(O))V'YVs(HO C ID( H3 + 10IIH3).

Proof of lemma 2.2.8. Lemma 2.2.8 follows immediately from Lemmata 2.2.9 and 2.2.11.
Indeed, choose q: Q02,6r2 -- R to be a smooth function with = 1 and supp 7 c

Q02,6,r2 . C1 and P will denote a 3-independent constant and a 3-independent polynomial
that may change from line to line. Lemma 2.2.11 yields a bound on II(1IHk+1(Q&,ri):

IKIIHk+1(Q5 ,ri) II77(IIHk+1(Q6 ,r2) C1 (IKIj~k(Q3 , 2 ) + ID(jk (Q,6,r2). (2.58)
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Lemma 2.2.9 yields a bound on k-1| Vl'(ICoH1(Qri):

k-1

>E IIV(IICOH1(Q 6,ri) C 1 (IjiIHk+1(Q 6,ri) + IID(jjk(Q,',))+ (2.59)
l=0

+ P(l(K|jk(Q 3 ,ri)) ( IIjh Hk(Q,ri) + IID((jjIk-1(Qr 1))

(2.60)
(2.58)

< Ci(||D((||fk(Q6'r2) + Ik Hk(Q6r2))'

where in the second inequality we have used the assumed bound on | k (Q6  . Combining

(2.58) and (2.59) yields I|KII9k+1(Q,1r) C C1(IID((IlFk(Q1r 2) + II(C k (Q6, 2)), which can be

used to inductively prove the desired inequality (2.38). 0

We will not use the following proposition in this paper. However, it will be used in
[BoWel] to show that the linearized Cauchy-Riemann operator defines a Fredholm section.

Proposition 2.2.12 (linear elliptic estimate for k = 2). There is a constant E > 0 and for
every CO > 0, k > 0, and 0 < rl < r2 < p there is a constant C1 such that the inequality

IIIHk+1(Q 6',) C1 (II'DCIHk(Q6,r 2 ) + II(IIHO(Q6,r2))

holds for any choice of 6 E (0, r1/4], a coherent collection j of complex structures on Q6,,
with IIj - ilico < e and IIj - i||c2 < CO, a pair J of compatible almost complex structures on
QjP which are contained in a C 2 -ball of radius Co and which induce by (2.3) whose pairwise

constants of equivalence are bounded above by Co, and two pairs of sections (, k 6 -2(Q6,r 2 )

with ||C||co < c and I||Ijc1 < Co.

The proof is an easier version of the proof of Lemma 2.2.8.
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Chapter 3

Compactness

In this chapter, which is joint with Katrin Wehrheim, we establish a Gromov compactness
theorem for strip shrinking in pseudoholomorphic quilts when composition of Lagrangian

correspondences is immersed. In particular, we show that figure eight bubbling occurs in
the limit, argue that this is a codimension-0 effect, and predict its algebraic consequences -
geometric composition extends to a curved Aoo-bifunctor, in particular the associated Floer

complexes are isomorphic after a figure eight correction of the bounding cochain.

Philosophical Remark: In the early days of pseudoholomorphic quilts, the relevance of

figure eight bubbles was doubted. We hope that this chapter puts those doubts to rest. As we

summarize in 3.1.2 and explain in 3.4, figure eight bubbling cannot be a priori excluded for

dimension reasons, and will contribute to the algebra. So even if e.g. the isomorphism (2.1)

of Floer homology under geometric composition was to be proven with methods other than

strip shrinking, one must in general expect figure eight type obstructions. However, figure

eight bubbles should be viewed as a tool rather than an inconvenience: For instance, they

provide a cochain for LO 1 o La so that (2.1) continues to hold in more general situations

than [WeWoll considered. More generally, fully embracing figure eight bubbles will yield a

natural 2-categorical structure on the collection of all compact symplectic manifolds, which

will unify and extend a wide variety of currently-known algebraic structures.

While this chapter only provides substantial evidence for these algebraic results (or 'proofs

up to technical details" depending on ones standards of rigour), it does demonstrate in full

detail that figure eight bubbling is in fact analytically manageable: Section 3.2 gives rigorous

definitions of "squiggly strip shrinking" and the novel bubble types - figure eight bubbles and

squashed eight bubbles - and establishes lower bounds as well as topological controls on their

energy. A full removal of singularities for the new bubbles is established in [Boll. Section 3.3
shows how the full diversity of bubble types appears in the Gromov compactification for

"squiggly strip shrinking". Moreover, Appendix B in collaboration with Felix Schmdschke

provides the first nontrivial example of a general figure eight bubble.

3.1 Introduction

3.1.1 Analytic Results

The compactness analysis in 3.3 will for ease of notation be performed in the special case of

quilted squares with seam conditions in L01 , L12 and the width of the strip mapping to M1
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converging to zero. However, it generalizes directly to the following result for strip or annulus
shrinking in pseudoholomorphic quilts. (For an introduction to quilts, see [WeWo3].)

Gromov Compactness Theorem 3.3.1: Let QV be a sequence of quilted surfaces con-
taining a patch Q' diffeomorphic to an annulus or strip, equipped with complex structures
in which the width of Q' tends to zero as v -+ oc. (For allowable squiggliness - i.e.
variation of width - see Definition 3.2.2.) Label the patches of Q' with a tuple M of
closed symplectic manifolds (or noncompact ones without boundary which come with a pri-
ori C-bounds as discussed in Remark 3.3.4), let M1 and MO, M2 be the labels of Q' and
the adjacent patches, and fix compatible almost complex structures over each patch. Fix
compact Lagrangian seam conditions for each seam of Qv so that the Lagrangian correspon-
dences L0 1 , L 12 associated to the seams bordering Qvj have immersed composition L01 o L 12 .
Now suppose that (V)VEN: Qv -+ M is a sequence of pseudoholomorphic quilts of bounded
energy with the given seam conditions.

Then there is a subsequence (still denoted (v)VEN) that converges up to bubbling to
a punctured pseudoholomorphic quilt v : Q %Z -+ (M",M1 ). Here Q' is the quilted
surface obtained as limit of the Qv by replacing Q' with a seam labeled by Loi o L12,
Z is a finite set of bubbling points, v' satisfies seam conditions in the fixed Lagrangian
correspondences and for the new seam in L01 o L1 2 (in the generalized sense of (3.2)), and
convergence holds in the following sense:

" The energy densities Idiv_ 2 are uniformly bounded on every compact subset of Q xZ,
and at each point in Z there is energy concentration of at least h > 0, given by the
minimal bubbling energy from Definition 3.2.7.

* The quilt maps i2"I|t(Qvuz) on the complement of Z in the patches other than Q'
converge with all derivatives on every compact set to v.

" At least one type of bubble forms at each point z E Z in the following sense: There is
a sequence of (tuples of) maps obtained by rescaling the maps defined on the various
patches near z, which converges C' to one of the following:

- a nonconstant, finite-energy pseudoholomorphic map R2 -+ M to one of the sym-
plectic manifolds in M (this can be completed to a nonconstant pseudoholomorphic
sphere in Mt);

- a nonconstant, finite-energy pseudoholomorphic map H -+ M - x M to a product of
symplectic manifolds associated to the patches on either side of a seam in QV, that
satisfies the corresponding Lagrangian seam condition (this can be extended to a
nonconstant pseudoholomorphic disk in M- x Me, in particular including the cases
of disks with boundary on LO, c Mc- x M, or L 12 C Mi X M2);

- a nonconstant, finite-energy figure eight bubble in the sense of (3.1) below;

- a nonconstant, finite-energy squashed eight bubble in the sense of (3.2) below, with
generalized seam conditions in LO, o L 12.

Gromov compactificat ion of strip-shrinking moduli spaces: Note that the above par-
tial Gromov compactness statement only requires the composition LO, o L 12 to be immersed.
If the self-intersections of this immersion are locally clean, then the results of [Bol] allow us
to remove the singularities in the limits of the main component as well as the figure eight and
squashed eight bubbles. Moreover, the techniques of [Bol] also provide "bubbles connect"
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results for long cylinders, so that a "soft rescaling iteration" (guided by capturing all energy)
will yield the following full Gromov compactification of a moduli space with squiggly strip-

(or annulus-) shrinking in terms of bubble trees: On the complement of the new seam, these
trees are made up of trees of disk bubblesi attached to the seams, with additional trees of
sphere bubbles attached to the disks, seams, or interior of the patches. On the new seam,
as indicated in Figure 1-2, starting from the root, every bubble tree starts with a (possibly
empty or containing constant vertices) tree of squashed eight bubbles. Attached to this are
figure eight bubbles (possibly constant) in such a way that between any leaf and the root
of the complete tree there is at most one figure eight. Trees of disk bubbles with boundary
on L01 resp. L 12 can then be attached to the corresponding seams of the figure eight bub-
bles. Finally, trees of sphere bubbles can be attached to the interior of each patch or the
seams in this bubble tree. The hierarchy in this compactification is illustrated in Figure 3-2
(including the additional complication of Morse flow lines). We will not provide a detailed
construction of this compactification in the present chapter, whose point is to establish the
foundational analysis. The full compactification (including Morse flow lines) will be part of
the polyfold setup in[BoWel].

Singular quilt bubbling phenomena: Beyond the standard bubbling phenomena (holo-
morphic spheres and disks) our Gromov compactification for quilts with strip-shrinking
involves two new types of bubbles: A figure eight bubble is a tuple of finite-energy pseu-
doholomorphic maps

wo: IR x (-oo,-1] -+ Mo, wi: R x -+ M1 , w2: R x [1, oo) -+ M2  (3.1)

satisfying the seam conditions

(wo(s, - i), w 1 (s, - 1)) E L01 , (wi(s, j), w2 (s, 1)) E L 12  V s E R,

while a squashed eight bubble is a triple of finite-energy pseudoholomorphic maps

wo: R x (-oo, 0] --+ Mo, wi: R -+ M1, W2 : R x [0, oo) - M2

satisfying the seam condition

(wo(s,0),wi(s),wi(s),w 2 (s,O)) ELo xM1 L1 2  Vs E R. (3.2)

Remark 3.1.1. Both of these bubbles are of singular quilt type in the sense that we cannot
generally expect a smooth extension to a quilted sphere. For the squashed eight bubble this
results from the boundary condition L0 1 o L 12 generally just being a Lagrangian immersion.
For the figure eight bubble this is due to the way in which the two seams intersect at infinity:
After stereographic compactification to a quilted sphere, they touch tangentially rather than
intersect transversely, which would allow a description of the singularity in terms of striplike
ends. Nevertheless, if the composition L0 1 o L 12 is cleanly immersed, then the removable
singularity result in [Bo1] shows that wo(s, t) -+ po E Mo and w2(s, t) -+ P2 E M2 have
uniform limits as s2 + t 2 -+ cc, whereas wi(s, t) -+ p: E M1 has two possibly different
limits as s -+ oo, both of which are lifts of (po,p2) E L0 1 o L12 , that is (po,pip1,p2) E
L0 1 xm1 L 12 .

1 Here we identify spheres with a single circle as seam and two patches labeled by Mk and MI with disk
bubbles in M- x Me by "folding" across the seam as in the portion of the proof of Theorem 3.3.1 treating
the (D01) case.
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Recall that even smooth removal of singularity generally does not provide lower bounds
on the energy of bubbles except in situations with simple topology; see Remark 3.2.10. In
3.2 we establish this lower energy bound for figure eight and squashed eight bubbles by

purely analytic means.

Lower Energy Bound Lemma 3.2.8: For fixed almost complex structures and La-
grangians with immersed composition Loi o L 12 , the energy of nontrivial figure eight and
squashed eight bubbles is bounded below by a positive quantity.

Finally, Appendix B in collaboration with Felix Schmiischke explains how pseudoholo-
morphic disks and strips can be viewed as special cases of figure eight bubbles, and we
provide an example of a nontrivial figure eight bubble with embedded composition LO, o L12
and target spaces MO = M2 = Cp3 , Ml = Cpl x Cpl.

3.1.2 Algebraic consequences of figure eight bubbling

We establish our analytic results in settings that will allow us to describe compactified
moduli spaces of pseudoholomorphic quilts with shrinking strips as zero sets of Fredholm
sections in polyfold bundles. This will put the universal regularization theory of [HoWyZe2]
at our disposal. In particular, there will be no need to prove a separate gluing theorem for
exhibiting configurations with figure eight bubbles as boundaries of the compactified moduli
space: Pre-gluing constructions outlined in 3.4.1 will provide polyfold charts with bound-
ary for bubble trees of (not necessarily pseudoholomorphic) quilted maps, and the proof of
the nonlinear Fredholm property of the quilted Cauchy-Riemann operator in this polyfold
setup will be essentially a version of the quadratic estimates in the classical gluing analysis
(which in our case should follow from combining the results of [WeWol] and [Bol]). More-
over, the boundary stratification of the ambient polyfold will directly induce the boundary
stratification of the (regularized) moduli spaces. This offers a semi-rigorous method for
predicting algebraic consequences: If the considered moduli spaces can be cut out from
ambient polyfolds, then the algebraic identities are given by summing over the top boundary
strata of the polyfold. Furthermore, if the local charts for the polyfold arise from pre-gluing
constructions (as has been the case in all known examples), then the boundary stratification
can be read off from the gluing parameters. We thus analyze in 3.4.2 the boundary strata
predicted by our Gromov-compactification in the case of strip-shrinking used to prove (2.1).
Based on that, 3.4.3 gives a fair amount of detail on the extension of these moduli spaces
by Morse trajectories. This is desirable for easy polyfold implementation as well as reducing
algebraic headaches by working with finitely generated chain complexes. Finally, we use this
analysis of boundary strata to predict in 3.4.4 a generalization of the isomorphism (2.1) of
Floer homology under geometric composition.

Besides a Fredholm description of figure eight moduli spaces and generalization of (2.1),
another motivation for developing the analysis described in 3.1.1 is to obtain a new approach
to the construction of the Ao-functors associated to monotone Lagrangian correspondences
in [MaWeWo]. Whereas the latter requires a technically cumbersome construction of quilted
surfaces with striplike ends and regular Hamiltonian perturbations, and is heavily restricted
by monotonicity requirements, a polyfold setup for figure eight moduli spaces will provide
a direct construction of curved2 Ao-functors for general Lagrangian correspondences. As

2 Disk bubbling gives rise to mo terms in all A,,,-relations, so that in particular squares of differentials
can be nonzero. This can be thought of as allowing curvature, hence we follow e.g. [Aul and denote this
generalized type of A.-relations by the prefix "curved".
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we have explained in Chapter 1, we will be able to work directly with the singular quilted

surfaces that realize the multiplihedra in [MaWol, since these are special cases of figure eights

with MO = pt and marked points on boundary and seams. Analyzing moreover the boundary

stratification of general figure eight moduli spaces, we arrive at the conjecture that geometric

composition is encoded in terms of a curved Aoo-bifunctor, which in turn specializes to the

desired generalization of the Aoo-functors in [MaWeWo]. In fact, these methods can be

extended to generalizations of figure eight moduli spaces, leading to a conjectural symplectic

(00, 2)-category that we will further investigate in future work. While the complete polyfold
construction of these new algebraic structures in [BoWel] will be lengthy since we aim
to provide a technically sound and easily portable basis for all future use of quilt moduli
spaces, its rough form and algebraic consequences are already so apparent from our current
understanding that it seems timely to give this semi-rigorous exposition. We do so in order to
motivate the development of this theory and enable investigations of its future applications.

3.2 Squiggly strip quilts and figure eight bubbles

The purpose of this section is to establish a general setup for squiggly strip shrinking in
quilted surfaces and introduce the new bubbling phenomena with their basic properties.
Besides sphere and disk bubbling, two novel sorts of bubbles may appear: figure eight
bubbles and squashed eight bubbles, both of which are introduced in Definition 3.2.5. In
Lemma 3.2.8, we show that the energy of the figure eight and squashed eight bubbles is
bounded below, which will be a key ingredient in our proof of the Gromov Compactness
Theorem 3.3.1. The proof of Lemma 3.2.8 relies on a C -compactness statement for squiggly
strip shrinking from [Bol], which we restate in Theorem 3.2.9.

In this section and the next we will be working with symplectic manifolds and with
pseudoholomorphic curves with seam conditions defined by compact Lagrangian correspon-
dences

Loi c M6 x Mi, L12 c MT- X M2. (3.3)

When the following intersection in Me- x M, x ME x M2 is transverse, we follow [WeWo4]
and say that L0 1 and L 12 have immersed composition:

(LO1 x L1 2 ) rh (M- x li x M2 ) =: Lo, xMl L 12. (3.4)

Indeed, the transversality implies that LO, x M L 12 C M& x M, x MT x M2 is a compact
submanifold, and the projection 7o2: Lo, X M L 12 -+ M6 x M2 is a Lagrangian immersion
by e.g. [WeWo4, Lemma 2.0.5] (which builds on [GuSt, 4.1]). We will denote its image, the
geometric composition of L0 1 and L 12 , by

Lo i o L 12 := ro2(Loi xMl L12) C M - x M2.

In some ,contexts we will assume cleanly-immersed composition, that is an immersed
composition such that any two local branches of the immersed Lagrangian Lol o L 12 intersect
cleanly.

Throughout 3.2 and 3.3 we will work with fixed symplectic manifolds MO, M1 , M2

without boundary which are either compact or satisfy boundedness assumptions
as detailed in Remark 3.3.4, and compact Lagrangians Loi, L 12 as in (3.3) with
immersed composition.
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We will consider pseudoholomorphic quilts with respect to compatible almost complex

structure:

Je: [-p, p] 2 -+ J(M, we) for f = 0, 1, 2. (3.5)

These are allowed to be domain-dependent 3 but are C as maps [-p, p] 2 x TMt -+ TMe,
where k will be either a positive integer or infinity. Then compatibility means that

9(s, t) := w(-, Jt (s, t)-) (3.6)

are metrics on Mj that are Ck in (s, t) E [-p, p] 2.

The underlying quilted domains of our pseudoholomorphic quilt maps will be open

squares with two seams. One should imagine these as part of the domain of a larger pseudo-
holomorphic quilt with compact domain or with quilted cylindrical ends. The basic (localized
and rescaled) examples studied in [WeWol] are squares (-1, 1)2 with seams (-1, 1) x {t6},
whose main feature is a middle strip (-1, 1) x [-J, 6] of constant width 26 > 0. The following
definition generalizes the underlying quilted surfaces to allow middle domains { It I f(s) }
of local widths 2f(s) > 0 varying with s E (-1, 1). Since diffeomorphically such domains
are still strips, we call them "squiggly strips".

Definition 3.2.1. Fix p > 0, a real-analytic function f : [-p, p] -+ (0, p/2], almost complex

structures J, f = 0, 1, 2 as in (3.5), and a complex structure j on [-p, p] 2 . A (Jo, J1, J2 ,j)-
holomorphic size-(f, p) squiggly strip quilt for (Loi, L 12 ) is a triple of smooth maps

vo: {(s, t) E (-p, p) 2 t -f(s)} -Mo

V vi: {(s, t) E (-p, p) 2 1 ItI < f(s)} - M, (3.7)

V2: {(s, t) E (-p, p) 2 1 t > f(s)} _4 M22

that satisfy the Cauchy-Riemann equations

dv, (s, t) o j(s, t) - Jp (s, t, vf (s, t)) o dvf (s, t) = 0 V f = 0, 1, 2 (3.8)

for (s, t) in the relevant domains, fulfill the seam conditions

(vo(s, -f(s)), v1(s, -f(s))) E Lo 1, (vi(s, f(s)), v 2 (s, f(s))) E L 12  V s E (-pp),
(3.9)

and have finite energy4

E(v) := fVOWo + fv*Wi + fV2W 2 = (fjdvol2 + fIdvi 2 + fldv 2 12 < 00.

When j is the standard complex structure i, (3.8) reduces to the equation

0O9 v(s, t) + Je(s, t, vE (s, t))at v(s, t) = 0.

When considering a (Jo, Ji, J2 )-holomorphic squiggly strip quilt v", it will be useful to

3 Note in particular that we do not require J1 to be constant near the seam as in [WeWol]. This
is necessary because the corrected proof of transversality in [WeWo5] does not guarantee regular almost
complex structures in this class.

4 Throughout we will make use of the standard energy identity [McSa, Lemma 2.2.1] for pseudoholomor-
phic maps.
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consider the energy density functions

I
d (-1, 1)2 -+ [0, oo), ldv(s, t) := (dvo(s, t)A + Idvi(s, t)Ij + Idv2 (s, t) 2,

(3.10)

where the norms Idv(s, t) I are induced by the metrics defined by Wt and J as in (3.6) and set

to be zero on the complement of the domain of ye. If v is a squiggly strip quilt, then Idvj is

upper semi-continuous on {(s, +f(s))}, continuous elsewhere, and satisfies E(2) = } f dv| 2 .

The goal of this chapter is to generalize and strengthen the strip shrinking analysis

in [WeWol], which considers sequences of (JO', Jj', J2)-holomorphic squiggly strip quilts of

width f" = P -+ 0. For that purpose we consider varying width functions f" that uniformly

converge to zero as follows.

Definition 3.2.2. Fix p > 0. A sequence (f")N of real-analytic functions f v: [-p, p] -

(0, p/2] obediently shrinks to zero, V' => 0, if maxSE[_p,p] fU(s) - 0 and

sup -=: Ck < oo Vk e N0 ,
yEN minSE[-p,p] f (S)

and in addition there are holomorphic extensions Fv: [-p, p] 2 -+ C of fU(s) = F"(s, 0) such

that (FV) converges C' to zero5

We will see in Theorem 3.3.1 that any sequence (v") of pseudoholomorphic squiggly strip

quilts of bounded energy and obediently shrinking widths f" => 0 has a subsequence that
- up to finitely many points where energy concentrates - converges to a degenerate strip
quilt, in which the middle domain mapping to M, is replaced by a single straight seam

mapping to the immersed Lagrangian L0 1 o L12 . Here bubbling near the middle squiggly

strip may lead to limit maps whose seam values switch between the sheets of LO, o L 12 . Thus

we need to allow for singularities in the degenerate strip quilts as follows.

Definition 3.2.3. Fix p > 0, almost complex structures J, f E {0, 2} as in (3.5), and
a complex structure j on [-p, p] 2 . A (Jo, J2 ,j)-holomorphic size-p degenerate strip
quilt for (LO, x M1 L 12 ) with singularities is a triple of smooth maps

UO: (-P, ) x (-P,0] - S x {0} -+ Mo

v= Ui: (-pp) - S -+ M

u2: (-p, p) x [0, p) ' S x {0} -+ M2

defined on the complement of a finite set S C R that satisfy the Cauchy-Riemann equation

(3.8) for f E {0, 2} and (s, t) in the relevant domains, fulfill the lifted seam condition

(uo(s, 0), u1(s), vI(s), U2(S, 0)) E Lo1 x M 1 L 12  V s E (-p, p)NS,

5 To see why the last condition is necessary, consider the sequence of functions (F": [-1, 1]2 -+ C) defined
by F"(z) := exp(-v) sin(2vz) + 1/4. For x E R, we have the formulas F"(x) = exp(-v) sin(2vx) + 1/4 and
F"(ix) = iexp(-v)(exp(2vx) - exp(-2vx))/2 + 1/4, so the restrictions to [-1, 1] x {0} converge in C' to
zero but F"(3i/4) diverges to io.

63



and have finite energy

E(u) := fuswo+fU*W 2 = -(fIduo12 +fldu 2 12 < 00.

Remark 3.2.4. If u1 in the above definition continuously extends to a point in S, then - by
the standard removal of singularity result with embedded Lagrangian boundary conditions -
all ui extend smoothly to this point. Hence one can prescribe S to be the set of discontinuities
of U1.

In fact, the removal of singularity for squashed eights established in [Bol, Appendix
A] shows that uo and U2 extend continuously to any point in S under the hypothesis that
Lo, and L 12 have cleanly-immersed composition. In this case, the only map with any
discontinuities is u1.

At the points of energy concentration, we will see that four types of bubbles may occur:
the familiar sphere and disk bubbles, and the novel figure eight and squashed eight bubbles.
These novel types of bubbles result from energy concentrating on the limit seam (-p, p) x {0}
in such a way that after rescaling (to achieve uniform gradient bounds), the middle squiggly
strip converges to a straight strip of constant width, or zero width in the case of a squashed
eight bubble. Note here that limit maps of this rescaling will be pseudoholomorphic with
respect to the almost complex structures at the point of energy concentration.

Definition 3.2.5. Fix domain-independent almost complex structures J E 7(M, wt) for
f= 0, 1, 2.

A figure eight bubble between L0 1 and L 12 is a triple of smooth maps

wo: R x (-00, -2 aM

_m=wi: R x [-j1, 1] -+ M1

W2: R x [1, oo) -+ M2

that satisfy the Cauchy-Riemann equations &owe + J(we)&tw = 0 for f = 0, 1, 2, fulfill
the seam conditions

(wo(s, -1), wi(s, -j1)) E Loi, (wi(s, j),w2(s, 1)) E L1 2  V s E R

and have finite energy

fWmwo + fw~wi + fww 2 = 1 (fIdwoI 2 + fIdwi12 + fldw2 12) < 00.

A squashed eight bubble with seam in Loi xM 1 L 1 2 is a triple of smooth maps

wo: R x (-oc, 0] -+ Mo

_w=wi: R -+ M,

w2: R x [0, oo) -+ M2

that satisfy the Cauchy-Riemann equations &8wj + Je(w)otw = 0 for e E {0, 2}, fulfill
the generalized seam condition

(wo(s, 0), wi(s), wi(s), w 2 (s, 0)) E Lo1 XM, L 12 Vs E R,
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and have finite energy

fwwo + f w* 2 = (fdwo2 + fdw 2 12 < 00.

The name "figure eight" for the first type of pseudoholomorphic quilt comes from an

equivalent description via stereographic projection (as explained in the following remark),
while the name "squashed eight" indicates that the second type of quilt can occur as limits

of figure eights whose entire energy concentrates at infinity, corresponding to shrinking
the middle strip. Alternatively, squashed eights can be viewed as punctured disk bubbles

D-{1} -+ M- x M2 with boundary mapping to the immersed Lagrangian LO, o L12 in such

a way that it has a smooth lift to LO, x M, L 12 . As explained below, the singularity cannot
necessarily be removed.

Remark 3.2.6.

" Recall that a pseudoholomorphic map R2 -+ M gives rise to a punctured pseudoholo-

morphic sphere w : S2K{(0, 0, 1)} -+ M via stereographic projection S2N{(0, 0, 1)} -+ R2,
where we identify S2 = {(x, y, z) E R3 x2 + y2 + z 2 = 1} with the unit sphere in W.
If the energy f W*wm is finite, then w extends smoothly to the puncture (0,0,1) by the
standard removal of singularity theorem.

" Similarly, one can view a pseudoholomorphic disk with boundary on LO, as a quilt on S 2

arising from a quilt on R 2 , given by a Jo-holomorphic patch wo : R x (-oo, 0] -+ MO

and a Ji-holomorphic patch wi : R x [0, oo) -+ Mi satisfying the seam conditions

(wo(s, 0), wi (s, 0)) E L01 , as follows: Stereographic projection lifts these to pseudoholo-
morphic maps wo : S2_{(0, 0, 1)}n{y <; 0} -+ Mo and wi : S2-{(0, 0, 1)}n{y ;> 0} -+ Mi
defined on the two punctured hemispheres, which map the common boundary to Loi. The
standard removal of singularity can be interpreted to say that wo and w, extend smoothly
to the puncture (0, 0, 1), thus forming a pseudoholomorphic quilted sphere with one seam

- the equator {y = 0}.

The two hemispheres are conformal to disks, so that the extended maps wo, wi can be

combined to a single pseudoholomorphic map from the disk to M(- x M1 w.r.t. the almost

complex structure (-Jo) x J1 , with boundary values in L01 .

" A squashed eight bubble gives rise to a quilt on S2 as in the previous item, but due to the

generalized nature of the seam condition, the removal of singularity is less standard. Under
the hypothesis that LO, and L 12 have cleanly-immersed composition, [Bol, Appendix A]
yields continuous extensions of wo and w2 across {(0, 0, 1)}, thus giving rise to a continuous
but not necessarily smooth map from the disk to M- x M2 with boundary values in

Lo, o L 12 .

e In the case of the figure eight bubble, (wO, Wi, w2) is a pseudoholomorphic quilt with total
domain R2 , which maps the seam R x {-}} to L01 and the seam R x {} to L12 . Pulling

these maps back to the sphere by stereographic projection, we obtain a pseudoholomorphic

quilt whose domain is the punctured sphere, and which consists of the following patches:

wO: S2 {(0, 0, 1)} n {y -I(1 - z)} -* Mo,

wi: S2 "{(0,0, 1)} n f{- (1 - z) y <'(1 - z)} -+ M1,

W2: S 2 _{(0, 0, 1)} n {j(1 - z) y} -+ M 2 .
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This quilt maps the seam {y = - (1 - z)} to Lo, and the seam {y = j(1 - z)} to L 12 .
The union of these two seams y = +j(1 - z) on the sphere looks like the figure eight

when viewed from the positive z-axis: two circles that intersect tangentially at (0, 0, 1).
[Bol] establishes a continuous removal of singularity for (wO, Wi, w2) at this tangential

intersection when Lo, and L 12 have cleanly-immersed composition.

We now turn to the definition of, and lower bounds on, the minimal bubbling energy h,
which we will need to control the number of bubbling points in the proof of Theorem 3.3.1.

Definition 3.2.7. The minimal bubbling energy for almost complex structures

Jo, J1 , J2 as in (3.5) is the minimum h := min{hS2,h D2,h Lo1 oL1 2 , h8} of the following types
of bubble energies. 6

" The minimal sphere energy hs2 is the minimal energy of a nonconstant7

J(so, to)-holomorphic sphere in MR for any f = 0, 1, 2 and (so, to) E [-p, p] 2.
" The minimal disk energy hD2 is the minimal energy of a nonconstant pseudoholo-
morphic disk in (Mo x Mi, (-Jo(so,0)) x Ji(so,0)) with boundary on Lo, or in (Mi x

M2 , (-Ji(so, 0)) x J2 (so, 0)) with boundary on L 12 for any so E [-p, p].

" The minimal figure eight energy h8 is the minimal energy of a nonconstant

(Jo(so, 0), J 1 (so, 0), J2 (so, 0))-holomorphic figure eight bubble between Lo, and L12 for

any so E [-p, p].

e The minimal squashed eight bubble energy hLojoL12 is the minimal energy of a
nonconstant (Jo(so, 0), J2 (so, 0))-holomorphic squashed eight with seam in Lo, xM, L 12

for any so E [-p, p].

In the remainder of the section, we prove two results related to the minimal figure eight
energy. We begin by establishing positivity h8 > 0 in Lemma 3.2.8, which we will need in

3.3 to bound the number of bubbles during strip shrinking. This considerably strengthens
the bubbling analysis in [WeWol], which merely proves that the number of bubbling points
must be finite.

The final result, Proposition 3.2.11, is a weak removal of singularity for any figure eight
and squashed eight bubble. It applies even when the geometric composition Lo, o L12
is not immersed and yields a tuple of smooth maps with compact quilted domain that
approximately capture the energy of the bubble and thus can be used in Remark 3.2.10 to
give a topological understanding of the possible bubble energies.

Lemma 3.2.8. Fix p > 0 and sequences (UJ', J{', J2')vEN of C 3 almost complex structures
on [-p, p] 2 as in (3.5), such that Jtj is locally bounded in C3 and such that the C12 -limit
of Jj' is a C' almost complex structure. Then inf, h(JO', J1j, J2') is positive, where h is the
minimum bubbling energy as in Definition 3.2.7.

We will prove this energy bound by contradiction: Given a sequence of figure eight or
squashed eight bubbles with positive energy tending to zero, we rescale to produce a non-
constant tuple of maps, which is a contradiction to the scale-invariance of energy. Here

6 For noncompact manifolds as in Remark 3.3.4, spheres, disks, and figure eights touching or contained.
in the boundary strata of a compactification have to be considered here.

7 If there are no nonconstant pseudoholomorphic spheres, e.g. because the symplectic manifolds are exact,
then we set hs2 = inf 0 := oc; and similarly in the following.
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the convergence of the rescaled maps will be deduced from the following result of [Bol],
which establishes C -compactness given a uniform gradient bound. It uses the notion of a
symmetric complex structure on [-p, p] 2, which is a complex structure j such that the
equality

j(s, t) = -- a j(s, -t) 0 0-

holds for any (s, t) E [-p, p]2 , where a is the conjugation ca8 + 06 ) on%, - Oat. (The
standard complex structure, for instance, is symmetric.)

Theorem 3.2.9 (Thm. 3.3, [Bol]). There exists e > 0 such that the following holds: Fix
k E N> 1 , positive reals J' -+ 0 and p > 0, symmetric complex structures j" on [-p, p] 2 that
converge CO to j' with ||ji -i||co < e, and Ck+ 2 -bounded sequences of Ck+ 2 almost complex
structures Jt on [-p, p] 2 as in (3.5) such that the Ck+1-limit of each (Jtj) is a C' almost
complex structure.

Then if (v, v', v') is a sequence of size-(6V, p) ( Jg, Jj, J2j, jv)-holomorphic squiggly strip
quilts for (LO 1 , L 12 ) with uniformly bounded gradients,

sup IdvI(s, t) < oc,
VEN, (s,t)E[-p,p 2

then there is a subsequence in which (vv(t - J5)), (v'It=o), (vv(t + Jv)) converge Cfk to a

(JOr, J2, i)-holomorphic size-p degenerate strip quilt (v', v', v') for L0 1 xM, L 12.
[-ppl 1dvvI s, ) 0 ols, he v, v' are not bothIf the inequality liminfv_+00,(s,t)E[ pi2 |dv"|(s,t) > 0 holds then v 2

constant.

Proof of Lemma 3.2.8. We begin by proving energy quantization for the figure eight bubble.
Suppose by contradiction that there is a sequence w' = (w', w', w') of

(Jj (o", 0), J' (,", 0), J2(u", 0))-holomorphic nonconstant figure eight bubbles for some (av) c
[-p, p], with energy E(w") -- 0. Then, despite dealing with a quilted domain, we can deduce

limV - suPee{o,1,2} sup Idwvl = 0 from the mean value inequality Idu(z) 2 < Cr 2 fB(z) Idu1 2

for pseudoholomorphic maps (see e.g. [McSa, Lemma 4.3.1] or [Wel, Theorem 1.3, Lemma
A.11). 8 Indeed, it applies to each of the maps wO, Wi, w2 on balls of radius - that do2
not intersect seams, and it applies to the folded maps (wo(s, - - t), w,(s, - + t)) and
(wi(s, 0 - t), W2(s, I + t)) on partial balls of radius - that intersect the boundary of the
domain R x [0, 1], where these maps are defined, only in R x {0}, where we have Lagrangian
boundary conditions in Lo, resp. L 12 . Together, these balls cover the entire domain of the
figure eight, and thus prove the uniform gradient convergence.

Next, since each triple is nonconstant we can find a subsequence (still denoted (w")veN),
an index Lo E {0, 1, 2}, and points (sv, t') in the domain of w" such that 3' dw' (s", t") I >

} supE{O, 1,2} sup Idw'I. We just showed 6 v -+ 0, and we claim that in fact S't" -+ 0. Indeed,
this only requires a proof in the case It" -+ oc. In that case we may apply the mean value
inequality on balls of radius t" - 1 to obtain J"t" -* 0. By shifting each triple of maps in
the s-direction, we may moreover assume s" = 0 for all v E N.

8 Here we use the metric on Me that is induced by we and Jt by (3.6). Note that for any fixed v, the
convergence Je' -+ Jf implies that the norm induced by this metric is equivalent to the norm induced by we
and JI'; furthermore, the constant of equivalence can be chosen to be independent of v. This in particular
yields uniform constants in the mean value inequalities.
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Now rescale vo'(s, t) := w,'(s/&", t/6) to obtain maps

v' : R x (-oo, 16V -+ Mo, vV : R x [-15', 6"] --+ M1, v :R x "0) -- M2.

These maps are Je(o", 0)-holomorphic and satisfy the following seam conditions:

(v (s, - 61"), vo(s, -16')) E Loi, (vf(s, }v), vv(s, 16v)) E L1 2  Vs E R.

The rescaling was chosen to ensure an upper bound on the gradient, supEe{o,1,2}| dvk"| < 2,
as well as a lower bound Idvv (0, v) ; 1 for T" := 6t" --+ 0. Theorem 3.2.9 implies that

the restrictions of 'vv(s, t - j ") resp. vv'(s, t + -j") to (-1, 1) x (-1, 0] resp. (-1, 1) x [0, 1)
converge Cilo to maps v' resp. v2, and that at least one of the limit maps is nonconstant.
This is in contradiction to the scale-invariant energy converging to 0:

0 < (vO )*oO + (v )*W2

= lim (V V)*WOo + (V V)*2
"+ mo 1,1)x [0,1) 0 J(- 1,1)x [o,1) ( 2 )

= lim (wV)*o + (wV)* < lim inf E(w) = 0.V-+00 (fB(-6 6,5) x[obV) 0 fB(-6V, 6V) x[o,6V) 2 )) -+oo*0

Hence we have proven the existence of a positive lower bound h8 > 0.
A similar argument establishes energy quantization for squashed eights. One difference

between the two arguments is that the mean value inequality as stated in the literature
requires the boundary to map to an embedded Lagrangian, so we cannot deduce uniform
gradient convergence to zero. Hence we consider two cases, depending on whether the limit
L := limV1,0o suptE{o,1,2} sup jdw"'| (which exists after passing to a subsequence) is finite or
infinite.

" L E [0, oo) : Center and rescale as in the proof of h8 > 0. To deal with the immersed
boundary condition, choose a finite open cover L0 1 xM, L 12 = Ul1 U such that

7r2 : Loi xM 1 L 12 -+ M- x M2 restricts to an embedding on each Uj. Since the
rescaled maps have uniformly-bounded gradient, and since their boundary values have
smooth lifts to Lo, x M L 12 , we can pass to a subsequence and bounded domain to
work with embedded boundary conditions in some wro2 (Ui). Depending on whether L
is finite or infinite, we can then appeal to either standard bootstrapping techniques

(e.g. [McSa, Theorem 4.1.1]) or Theorem 3.2.9 to obtain convergence and hence a
contradiction.

" L = o0 : Choose points (sv, tv) and eo so that Idw" (s", t")I -+ oc. As in the proof of
Theorem 3.3.1, we can apply the Hofer trick to vary the points (sV, t") slightly and
produce numbers Rv, ev; rescaling by vfv(s, t) := wv(s" + s/R", t" + t/R") produces a
sequence of maps which has nonconstant limit.

Finally, h > 0 follows from the above since we have standard lower bounds hs2, hD2 > 0,
which can be proven by a single mean value inequality applied to balls resp. half balls of
large radius, see e.g. [McSa, Proposition 4.1.41. 0
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Remark 3.2.10. The minimal bubbling energies hs2, hD2, h8 , hLoiOL1 2 in Definition 3.2.7 can
also be bounded below by concrete topological quantities

hs2 , hD2 > hop2 min{hs, hLoioL12 } hitp

rather than the abstract analytic lower bound from Lemma 3.2.8. For sphere and disk
bubbles, this topological quantity is the minimal positive symplectic area of spherical or
disk (relative) homotopy classes. Proposition 3.2.11 bounds the minimal energy of squashed
eight and figure eight bubbles by the minimal positive symplectic area of "quilted homotopy
classes"

Io: D2 ( u M0 ,
ht"P := inf [ ([we], [ue]) ui : [0, 27r] x [- 1, 1] -4 M 1 , (3.11), (3.12)

fe{o,1,2} U2e: D2 - M 2 ,

for which uO, U1, u2 are continuous and satisfy the seam conditions

(uo(e -"), u1(0, - 1)) E Loi, (u1(6, }), u2(ei")) E L 12  V 0 E [0, 27r] (3.11)

and the "constant limit conditions"

ui(0, ti) = ui(0, t2 ), ui(27r, ti) = ui(27r, t2 ) V ti, t2 E [- , ]. (3.12)

We differentiate such quilt maps by the relation between the two constants ui (0, -) and
ui(27r, -):

" A (non-switching) homotopy figure eight is a tuple of maps (uo, U1, u2) as above
with ui(27r, -) = ui(0, -). That is, u1 : S x [-i, 1] -+ M1 is in fact defined on an
annulus with seam conditions that identify S' x { j} with the boundaries of the two
disk patches.

" A sheet-switching homotopy figure eight is a tuple of maps (uo, u1 , U2) as above
with ui(0, -) =: : ui(27r, -), where ul, u, represent two different lifts of

(uO(1), u2(1)) E Lo1 o L 12 to Lo, x m, L 12.

Note that sphere homotopy classes as well as disk homotopy classes for L0 1 and L 12 can
be represented by non-switching homotopy figure eights with one or two constant patches. 9

However, htoP := min{h O, h2, htsp} is not generally positive unless the symplectic and

Lagrangian manifolds have very simple topology. For example, we have htop = 0 as soon as

([we], 7r2(Me)) C R contains two incommensurate values for some f E {0, 1, 2}.

The possible homotopy classes of figure eight bubbles in the above remark can be de-
duced from the removal of singularity theorem in [Bol]. However, this also follows from the
following weaker result which requires fewer estimates. It yields not a pseudoholomorphic
quilt on S2 but a smooth quilt map with domain S2 m (D 2)- U (S1 x [0, 1]) U D 2 that
approximately captures the energy of the bubble. This result was first announced in [We2],
but we include it here for convenience. It is the only point in this chapter where we will not
assume Lo, and L 12 to have immersed composition.

9 Given a sphere or disk bubble, we can attach it to a constant homotopy figure eight under mild
hypotheses (e.g. that L01 , L 12 are nonempty and M1 is connected): Given any two points on LO, and L 12 ,
make a zero-energy homotopy figure eight with these values on the seams, uo and U2 constant, and ui a
path between the two projections.

69



Proposition 3.2.11. Let Loi c M&- x M1 , L 12 c M1- x M2 be compact Lagrangian corre-

spondences, and let (wo, W1, W2) be either (1) a figure eight bubble between Lo1 and L 12 or (2)

a squashed eight bubble with seam in Lo1 x m, L12 , where wi is the pullback w1(s, t) := (s).

Then for any f > 0 there exist smooth maps O: -+ Mo, L 1  [0,2w] x [-, {] - M1 ,

U2 : D2 - M2 satisfying the seam conditions

(uo(e-"), l1 (0, - 1)) e Lo 1, ('l(0, '), U 2(eio)) E L 12  V e2O E 0D2  R/27Z,

and whose energy is E-close to that of (wo, W1, w2),

usw0 + fwi + fuW 2) - (f wwo + f w~wi + f wW 2) 6.

Moreover, L 1 is constant on the two lifts of the line {[0] = [2w]} x [-, ] c S1 x [-., ], so
that i401 p , L1I{ 2 }x [,] pi form together with po := uo(ei0 ), P2 := U2 (e 0 )

two lifts (po, pj p ,p2) E Lo1 x M 1 L 12 of the same point (po,p2) E Lo1 o L 12.
In particular, if 702 : Lo1 x M L 12 -- Lo1 o L 12 is injective, then U1 can be chosen such

that it induces a smooth map u1 : S1 x [-1, 1] -+ M1 .

For the proof of Proposition 3.2.11, we will need an extension result. To state it we will use

the following notation for partitioning the closed unit ball B1 (0) c R2 into four quadrants:

Uo :{(x, y) E (0, 1) y < x, y -x}, Ui :={(x, y) E B(0, 1) x > y, x > -y},
(3.13)

U2 := {(x, y) E R(0, 1) I y ;> x, y > -x}, U3 := {(x, y) E 7(0, 1) I x < y, x < -y}.

The resulting partition of the boundary circle 601 (0) will be denoted by Ai := Ui n aW1(0)

for i = 0, 1, 2, 3, and we denote the intersections of these arcs by pi(i+1) := Ai Aj+1 for

i mod 4. We denote the length of a path o-i : Ai -* Xi with respect to gi by f(o-i) := fA, Id-i 1.

Lemma 3.2.12. Let (Xi, gi) be Riemannian manifolds equipped with closed 2-forms Wo for
i = 0, 1, 2, and let Yo 1 c Xo x X 1 , Y12 c X 1 x X 2 be closed submanifolds. Then for every

e > 0 there exists 6 > 0 such that the following extension property holds: Suppose that

-i : Ai -÷ Xi for i = 0,1, 2, 3 are smooth arcs that satisfy

f (O-3) 6, (o-i(pi(i+1)), oi+l(pi(i+l))) E Y(i+ 1 ) Vi mod 4. (3.14)

Here we denote X3 := X 1 , Y23 := Y1T, and Yo := YOT, with (.)T denoting the interchange
of factors in Xi x Xi+1. Then there exist smooth extensions 3i : Ui -+ X of ailAi = Ui such
that

/ &f awi : E, (i(p),aji+1(p)) EY(i+1) V pE Ui n Ui+1 V i mod 4.

Proof of Lemma 3.2.12. Set ai := oi(p(i-)j), bi := c-i(pi(i+i)) for i mod 4. For a constant
c' > 0 that we will fix later in the proof, let us show that if 6 is chosen small enough, there
exist x = (xo, x,, x 2 ) E Y01 X X1 Y1 2 (two lifts of the same point in Y01o Y12 c Xo x X2 )
such that the following distances with respect to the metric go G gi ( gi ( g2 are bounded,

max{d((bo, ai, bi, a2 ), x+), d((ao, b3, a3 , b 2 ), x )I < C'. (3.15)
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Suppose by contradiction that the sequences (o-1, o, o, o ) satisfy (3.14) for a sequence
61" -+ 0 but

min max{d((b', av, bv, av), x+) , d((av, bv, av, bv), x-)} > c' (3.16)
X =(xo,xl , x ,X2 )EYoi Xx 1 Y12

for all v E N with a' := o(p(i-i)i), b := o'(Pi(i+i)). Since (b, a) E Yoi, (bv, av) E

Y1 2 , (av, bv) E Y12 , (av, bv) E Y0 1 and Y0 1 , Y12 are compact, we may pass to a subsequence
and assume that ac', b have limits a9 0 , b as v -+ oo. These limits have to coincide a9 = b'
since they are the limits of endpoints of the paths o< whose length 6(ov) 6" goes to zero
with v -+ oc. This gives rise to two lifts x+ := (a0 , a , a0, a'), x- (a, a, a', a') E
Y01 X X 1 Y12 since (a' , a') = limvso,(bv, av) and (a' , a') = lim1 .,) o(av, b) are limits in
the closed submanifold Yo, and (a', a' 0 ) = limv+oc(bv, av) and (a', a') = lim,"o (a , bv)
are limits in the closed submanifold Y12 , and they contradict (3.16) since both distances
converge to zero, e.g.

d((b5, al, b , ag), X+) < d(bv, ao = b 0) + d(av, a') + d(b ,ai = bf) + d(av, a') -- 0.

With that we may assume to have lifts x = (Xo, X, , x2) E YI X X1 Y12 satisfying (3.15)
and begin to construct the extensions 5i by

ao(0) := Xo, ai(O) := , 2(0) X2, a3(0) := x.

To construct ai x i+1 : Ui n U i -+ Y(i+1), note that the given values on both ends of
this line segment are at distance at most E' in Y(i+1). Hence for sufficiently small 6' we
may use local charts of the submanifolds Yoi, Y12 to choose each extension ai : &Ui -+ Xi of

jilA, = oi such that they satisfy the seam conditions (aji(p), aji+1 (p)) E Yi(i+1) and length
bound t(ailaui) 5 2c' + 6. By choosing 4' and 6 sufficiently small, we can moreover ensure
that each of these loops lies in contractible charts of Xi. On the one hand, that allows us
to extend the given ai : OUi -+ X to a smooth map i : Ui -+ Xi. On the other hand, in
each such contractible chart V c Xi the given 2-form wilv = dqv has a uniformly bounded
primitive qv E Q (V), which gives the desired bound

Ji Zlw = 0 77v ||nvI|oot(ai~au ) J|nv|oo( 2e' + 6) < c

for sufficiently small 6 > 0. In fact, we can cover the projections of the compact La-
grangians to the factors Xi with finitely many contractible charts V so that l|iv |oo is
uniformly bounded. This ensures that the choice of sufficiently small 6 > 0 for given E > 0
is independent of the arcs -i. 0

Proof of Proposition 3.2.11. To simplify notation we shift domains so that wo and w2 in
case (i) as well as (ii) are parametrized by R x (-oo, 0] and R x [0, oo), respectively. On
these domains we rewrite the figure eight energy integral in polar coordinates iie(r, 6) =
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we(r cos 9, r sin 9) to obtain

E:= fw~wo + f1w~i + fw2W 2

= r-2 1oio1 2dsdt + I1twi 2d sdt + I r 21o@2 12dsdt
J(-C)0,0] fR x[-j fR x[0, 00)

lim r-A(r) dr
R-+oo foR

with integrand

A(r) f |ao@o(r, 0)1 2d9 + j |Io2(r, 0)1 2d9 + f r|Btwi(-r, t)| 2 dt

+ J2 rt wi(r, t)1 2dt.

The same holds for squashed eights if we drop the terms involving wi. By assumption

fj1r-A(r)dr converges as R -+ oc although A(r) ;> 0 and f -1r dr -+ oo as R -+ oc.
Hence there exists a sequence ri -4 oo such that A(ri) -+ 0. Depending on a 6 > 0 to be
determined and the c > 0 given, we now choose ro > 1 sufficiently large such that A(ro) 5 J
and E - foJo r-1 A(r)drl 1E. Denoting by B7: the ball of radius ro around the origin in
the halfplanes H+ = R x [0, oo) resp. H- = R x (-oo, 0], we now have approximated the
energy

E - W*W0 + w~i+ W*o 1 'E
\ B + j-roro]x[-+] 2W2)

and bounded lengths of arcs

S(W1i| ro L[i1) 
6 o/ro, (iiejIzJ=r0) V'r for f E {0, 2}.

Here the latter for @0 (and analogously for i1 2 and wi) follows from the estimate

e(@ o1liz=ro) Iraoio(ro,O)IdO < VirA(ro).

Then for sufficiently large ro > 1 and small 6 > 0, the maps (uo, U1, u2) will be con-
structed as extensions of (woIB-o, WlI [-,rox-] x [-1, 1] W2IB+ ). We first pull them back to the
quilted sphere by stereographic projection as in Remark 3.2.6, to define a quilted map
(vo, L1, v2) on the complement of a neighborhood N C S 2 of the puncture (0, 0, 1). Thus
N is a slightly-deformed ball with diameter of order ro-1, which we identify with BI(0)
in Lemma 3.2.12 so that the arcs ao = VO1,N and U2 = voIaN are reparametrizations of
the short paths (woIB- , w2IB+), and a1, 3 are the two connected components of v1IaN,
given by reparametrizations of the short paths Wi[o_ . For sufficiently small

6 > 0, Lemma 3.2.12 then provides a smooth extension of (vo, L1, v2)IaN by a quilted map
(do, al, a3, i2) on N with total symplectic area bounded by LE. After smoothing these
extensions near &N, we finally construct (Uo, U1, U2) by pullback of these extended maps.
More precisely, we construct uo (and similarly u2) by precomposition of vo, 5o with a smooth
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bijection from D 2 to dom(vo) U Uo which maps 1 E 9D 2 to the corner of Uo. (This is not

possible by a diffeomorphism, but there is a smooth map with vanishing derivatives at 1.)
To construct si : [0, 27r] x [-i, -] -+ M1 we pull back vi, a1, a3 by a smooth map from

[0, 27r] x [-i, j] to dom(ui) U U1 U U3 which on the boundary components [0, 27r] x { } (in
polar coordinates) coincides with the bijections from OD 2 to Uon(U1 UU3) resp. U2n(U1UU3)
used in the construction of Uo, U2, thus guaranteeing the seam conditions. It can moreover

be chosen as bijection with the exception of mapping the two edges {0, 27r} x [- 1, -] to
the common corner point U1 n U3 . Smoothness of these maps guarantees smoothness of the

pullbacks (Uo, U1, U2), and bijectivity on the complement of a zero set guarantees that they

have the same symplectic area as the extension of (vo, V1 , v2)1 N. Finally, ul by construction
is constant equal to a,(0) on {0} x [-i, -] and equal to a3(0) on {27r} x [--, j], and extends

smoothly to an annulus if a1(0) = a3(0). The latter is guaranteed by the seam conditions
on the extensions 3; if ro2 : Loi xxl L12 -+ Lo, o L 12 is injective. E

Remark 3.2.13. Under the hypothesis that L0 1 , L 12 have immersed composition, Proposi-
tion 3.2.11 can be modified to show that a squashed eight can be approximated by a homo-

topy squashed eight, rather than a homotopy figure eight. In this situation, the minimum
squashed eight energy hLoj oL 12 can be bounded below by the minimum positive symplectic
area of "homotopy squashed eights":

htoP := inf{ ([(-Wo) @ W21, [u]) > 01 u E CO(D, M- x M2 ), u(&D) c Lo, o L12LojoL 1 2

3.3 Toward Gromov compactness for strip shrinking

In this section we state and prove the Gromov Compactness Theorem 3.3.1, which is the

main result of this chapter. In order to focus on the relevant effects, rather than deal with
complicated notation, Theorem 3.3.1 is stated in the setting of squiggly strip quilts, with

the width of the middle strip shrinking obediently to zero. However, the results of this

section directly generalize to a sequence of pseudoholomorphic quilt maps whose domains
are quilted surfaces which vary only by the width of one patch - diffeomorphic to a strip

or annulus - going to zero.
Theorem 3.3.1 is a refinement and generalization of [WeWol, Theorem 3.3.1 and Lemma

3.3.2], where compactness up to energy concentration is proven for strip shrinking in the

special case of embedded composition, though only in an H2 n W1 '4 -topology and with a

lower bound on the energy concentration that has no geometric interpretation but arises by
contradiction from mean value inequalities. (In fact, the H2 n W1 '4 -convergence does not

even suffice to deduce nontriviality of the weak limit of rescaled solutions near a bubbling

point.) We establish full Co e-convergence in the most general natural case, with the further

generalization to noncompact manifolds being discussed in Remark 3.3.4. The proof will

moreover illuminate the origin of the different bubbling phenomena. Analytically, it relies

on Theorem 3.2.9, a result from [Bol]. A further generalization is that we will allow the two

seams bordering the middle strip to not be straight, so that Theorem 3.3.1 allows the first

author to establish a removal of singularity theorem for figure eight bubbles in [Bol].

Theorem 3.3.1. Fix p > 0, sequences J0', J1', J2 of smooth almost complex structures on

[-p,p] 2 as in (3.5) that converge C' to Jr: [-p,p]2 
-+ J(M,wt) for e = 0,1,2, and

a sequence (f V: [-p, p] - (0, p12]) of real-analytic functions shrinking obediently to zero

as in Definition 3.2.2. Then for any sequence (vV)uEN of (Jo", J1', J2)-holomorphic size-

( f, p) squiggly strip quilts for (Lo1, L 12 ) as in Definition 3.2.1 with bounded energy E :=
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supVEN E(v) < oo there exist finitely many blow-up points Z = {z 1,..., ZN} C (-p, p)2 and

a subsequence that Gromov-converges in the following sense:

1. There exists a (Jor, J2)-holomorphic degenerate strip quilt vt o for L0 1 x M, L 12 with
singularities, whose singular set S c (-p, p) a (-p, p) x {0} is contained in {Z1,. . . , zNj}
(-p, p) x {0}, such that (vo'(s, t-f"(s))) resp. (v'(s, 0)) resp. (vv(s, t+fv(s))) converge
C' on the domains (-p, p) x (-p, 0]xZ resp. (-p, p) x {0}'Z resp. (-p, p) x [0, p)xZ
to v' resp. v' resp. v'.

2. There is a concentration of energy h > 0, given by the minimal bubbling energy from
Definition 3.2.7, at each zj in the sense that there is a sequence of radii rv -+ 0 such
that

lim inf B jdvvI 2 > h > 0,V_ 00 B'- (Zj) )

where the energy densities |dvI| are defined as in (3.10).

3. At least one type of bubble forms near each blow-up point zj = (sj, tj): There is
a sequence (w-) of (tuples of) maps obtained by rescaling the maps defined on the
intersection of the respective domain with Brv(zj), which converges in C' to one of
the following:

(SO),(S1),(S2): a Jf (zj)-holomorphic map w': R2 -+ Mt for f = 0, 1, 2, which can be
completed to a nonconstant pseudoholomorphic sphere wf : S 2 -+ Me;

(DOI): a (-Je (sj, 0)) x J 0 (sj, 0)-holomorphic map w': H -- M6- xM1 with w'(IH) c
L0 1 , which can be extended to a nonconstant pseudoholomorphic disk TY : (D, 0D) -+

(M6- x Mi, Loi);

(D12): a (-J'(sj, 0))xJ2(sj, 0)-holomorphic map w': H -+ M- xM2 with w'(IH) C
L 12 , which can be extended to a nonconstant pseudoholomorphic disk w: (D, &D) -+

(M~ ~X M 2, L12 )

(E012): a nonconstant (Jo (sj, 0), Ji (sj, 0), J2 (sj, 0))-holomorphic figure eight bubble
between L0 1 and L 12 , as in Definition 3.2.5;

(D02): a nonconstant (J0(sj, 0), J2(sj, 0))-holomorphic squashed eight bubble with gen-
eralized boundary conditions in L0 1 o L12 , as in Definition 3.2.5.

Remark 3.3.2. If the composition L01 o L 12 is cleanly immersed, then [Bol, Thm. 2.2] guar-
antees a continuous removal of singularity for figure eight and squashed eight bubbles, in
particular for the bubbles produced in cases (EO12) and (D02) of Theorem 3.3.1. This allows
us to partially characterize the singular set S C R in (1) at which Tj does not extend con-
tinuously, and hence to which vO, v2 may not extend smoothly: A necessary condition for a
bubbling point zj to lie in S is that a sheet-switching bubble can be found by rescaling near
zj, i.e. a squashed eight bubble whose boundary arc on L0 1 o L 12 does not lift to Lo, x M, L 12 ,
or a figure eight bubble with lim,,-_O8 wl(s, -) 0 lim 8-++oc w"(s, -). However, this is not
a sufficient condition, since a tree involving several sheet-switching bubbles at zy could allow
continuous extension of U1 to z1 .

The proof of Theorem 3.3.1 will take up the rest of this section. Our first goal will be to
find a subsequence and blow-up points so that (2) and (3) hold together with the following
bound on energy densities:
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(0) The energy densities dII| are uniformly bounded away from the bubbling points, that
is for each compact subset K C (-p, p)2{zi, ... ZN} we have

sup |dvv1L(Kn(pp)2) < 00.
VEN

Then we will show that (1) follows from Theorem 3.2.9.

Suppose that we have already found a subsequence (for convenience again indexed by
V E N) and some blow-up points Z1,... ,zN E (-p, p) 2 such that (2) holds and we have
established (3) at each such point. Now either (0) holds, too, or we can pass to a further
subsequence and find another blow-up point zN+1 = (sN+1, tN+1) = liMv÷.(sv, tv) E
(-p, p)2_fZ,.... zN} such that lim I,0 Idv"(sv, t")I = oo. We can apply the Hofer trick
[McSa, Lemma 4.3.4]10 to vary the points (sV, t") slightly (not changing their limit) and find
ev -+ 0 such that we have

sup do"(s, t) 2Idv"(s",t")| =: 2R", RE" e oo. (3.17)
(s,t)EBev(s1',tv)

We will essentially rescale by Rv around (s', t') to obtain different types of bubbles, de-
pending on where the lines {t = f"(s)} get mapped under the rescaling. We denote by

4f := Rv( fv(sv) - tv) the t-coordinate of the preimage of the point (sV, f"(s')) under
the rescaling t + t" + t/R". After passing to a subsequence, we may assume that r
converges to r7 E R U {+oo} with r < -r+. Then exactly one of the following cases
holds:

(SO) TT = T = 00

(Si) TT = -oo and -r = oo

(S2) 2_ = rT = -00

(D01) 7 !' E R and -r = oo

(D12) T" = -oo and T-jv E R

(E012) T E R and -r < 7+0

(D02) T* = -r E R

Below, we will for each case specify the rescaled maps and establish their convergence to
one of the bubble types in (3) as well as prove the energy concentration in (2). Thus in all
cases we will have proven (2) and (3) for the new blow-up point zN+1, and after adding this
point we will either have (0) satisfied or be able to find another blow-up point. Since h > 0
by Lemma 3.2.8, we will find at most E/h such blow-up points in this iteration before (0)
holds.

Out of the seven blow-up scenarios just listed, the only case where our rescaling argument
will be significantly different from standard rescaling arguments is (D02), in which we will
need to appeal to the new analysis of Theorem 3.2.9. The rescaling argument in the cases
(DOI), (D12), (E012) is essentially the same as the standard process of "bubbling off a disk",

10 Note that the Hofer trick applies directly to each function f(x) = ldv(x)I for x = (s,t), although it is
only upper semi-continuous. In the proof, continuity is used only to exclude f(x,) - oo for a convergent
sequence x, -+ x.. For a bounded upper semi-continuous function f, we still have lim sup f(x,) < f(x.) <
oo, excluding this divergence.

75



since locally we can fold across the seam to obtain a pseudoholomorphic map to a product
manifold.

Before we rescale to obtain bubbles, we record the key properties of the rescaled width
function.

Lemma 3.3.3. Given a sequence (f")vEN of real-analytic functions shrinking obediently to

zero, shifts s"-+s , and rescaling factors a"-+oo, the rescaled width functions f"(s)
a"f"(s" + s/au) satisfy C' (R) convergence

f"- f"(0) --- 0, f"/If"(0) -+1.

Moreover, let F" be the extension of fv from Definition 3.2.2, identify (s, t) E R2 with
z = s+it E C, and set

#"(s, t) (s" + s/a", 2f"(s" + s/a") t)

"'(z) : v + z/a" - iF"(s" + z/a").

Then for any R > 0 and v sufficiently large, the maps (0')-l o #V are well defined on

BR(O). In the special case a' := (2f"(s"))-4 , the maps (ov)-l o # converge Co (R2, R2 ) to

(S, t) - (s, t + 1/2).

Proof. The functions f"cs) - f"(9) resp. f"(s)/J"(o) are equal to 0 resp. 1 at s = 0, so
it suffices to show that (f"(s) - fv(0))(k) and (fv(s)/f(O))(k) converge CO to 0 for every
k > 1. This convergence follows from the formulas

(f V - fV(0))(k) (s) = (a")1~k(fv)(k)(su + s), (I"/I"(0))(k) (s) = (a")k(f )((s" + a)

the convergence s" -+ s" and a" -+ oc, and the obedient shrinking f" -> 0 in Defini-
tion 3.2.2.

The domain of #" is [-a" (s"+p), -a"(s"- p)] x R which contains BR(0) for sufficiently

large v since s" -+ s" E (-p, p), a" -4 oo, and f" 0. The image concentrates at (sV, 0),
more precisely we have

#"(BR(0)) C BR6(s",O ), 6" := max{(a")-, 211f" co} - 0,

since k#"(s,t) - (s", 0)1 2 < s2 /(a") 2 + 411f"112 0t
2 < (j"I(s,t)I)2. Next, we claim that

BRP (s", 0) lies in the image of v" for sufficiently large v. Indeed, given y E BR6V (s", 0), we
can solve

y = b"(z) (3.18)

iff there is a solution z E -avsv + [-a"p, a"p]2 of

z = a"(y - s" + iF"(s" + z/a")) =: H(z).

The existence of a such a solution follows from Banach's fixed point theorem applied to H.
Indeed, H is a smooth map from -a"s" + [-a"p, avp]2 to itself since y E BRSv(s", 0) gives

IH(z) + a"s"| = |a"(y + iF"(s" + ))1 5 a"(|s"| + R" + |IF"I|co) < a"p
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for v sufficiently large so that RP" +IIF" Ico < p -Is"'. The latter holds for large v since the
left hand side converges to 0 while p - Is"I -+ p -I so > 0. Furthermore, H is a contraction
mapping once v is large enough so that IIF"Ilci < 1,

|H(z) - H(w)j = aQ|FV(s' + z/av) - Fv(s' + w/a") | IF"lciz - wI.

Therefore Banach's fixed point theorem guarantees a (unique) solution

z E -a's' + [-avp, ap] 2 of (3.18), which shows that for v > 1, the image of 0' con-
tains #"(BR(0)). To show that (b)-1 o ' is a well-defined element of C'(BR(O),R 2 ), it
remains to show that 0" is injective and has a Jacobian with nonvanishing determinant.

Injectivity again holds once lIF"|Ici < 1 since

(z) = '(w) <-- z - w = ia" (F(sV + z) - F(s" +

-=> z - w| ||F'||C1|1z - w|.-

The Jacobian of "' is given by

.3"(s t) - Jac(0")(s + it) = (a")-1 ( i+as im F"(s" + s) '9 im FU(s" + " ) 7
-a, re F"(s" + +"f) 1 - Ot re F"(s" + '+t) '

(3.19)

which for v > 1 has nonvanishing determinant since F" 0. This proves that (O")-1 0
is a well-defined element of C (BR(0), R2 ) for v > 1.

We now restrict to the case a' (2fv(s")) 1 . To establish the C' (R 2 , R2 )-convergence
of (4,)1o q5" to the map (s, t) - (s, t + j), we begin by noting their equality at (s, t) =

(0, -2),

((5"- o #") (, -) = (4")-l(s"-f"(s")) = (0, 0).

It remains to show C -convergence of the Jacobians Jac((")- 1 o #"/) -+ Id. Using the
inverse of (3.19) and abbreviating Qv(s, t) s" + ((")- 0 #V) (s, t)/a" we have

Jac (#) -1 o q5") (s, t) = (W((4")1(4U(st))) - Jac(#") (s, t)

1 -Otere F" oQ' -Otim F o Q" 1 0(, re F o Q' 1+ a, im Fv o T 2(f '(sv + sTa")t 2avf(s" + s/a") /
(1 + a. im F o Qv)(1 - at re F o Qv) + at im F1 o Q"&, re F 0 Q"

(3.20)

The C -convergence E" -+ 0 implies that the first matrix divided by the denominator
converges CO to the identity. In fact, this is Cfke-convergence if the derivatives of QU
up to order k are uniformly bounded on compact sets. In the second matrix we have
2(f")'(s" + s/a")t -* 0 in C c by the C -convergence f" -+ 0 and (a")- 1 -+ 0, and

the bottom right entry I (s+ (sV)s) - - 1 converges already in C' by the first

statement of the current lemma.

This proves CO convergence of the Jacobians and thus Cilee-convergence of the maps
(Ov)-' o 4". Since QV is given in terms of these maps and (a")-1 -+ 0, we conclude that its
derivatives are uniformly bounded on compact sets, thus the convergence of the Jacobians
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is in Co, which implies C2 -convergence of the maps (0')-l o #". Iterating this argument

proves the claimed C'0 e convergence. E

Continuing with the proof of Theorem 3.3.1, the nontrivial bubbles claimed in (3) are now

obtained as follows:

(Si): We will obtain a sphere bubble in M1 by rescaling

W'(s, t) := V'(s" + , , t" + t)

to define maps w': U{' -* M1 , with

U := {(s, t) I - R"(p + s") s < R"(p - s'), -(s) -Rt" t < f"(s) - Rvtv}.

The map w' is pseudoholomorphic with respect to JI'(t) := J{/(sv + s/R", t" + t/R");

due to the convergence Rv -+ oo, these almost complex structures converge in C' (R2) as

v -+ oo to the constant almost complex structure JI := Ji (s , t'). By construction,
the maps w' satisfy both upper and lower gradient bounds:

Idwv(0)1 = y I dvv(s", tv)I = 11dv(s", t")= 1, (3.21)
sup Idw (s, t)I _< sup 1 ldv(s, t)I < 2,

(S,t)E BRv E-v(0) 1(s,t)EG B& (sl',ff)

where the second equality in the top line follows for large v from the assumption 7 -+

+oo. The containment s" -s s' E (-p, p) implies that the left resp. right bounds
Rv(:p - sv) of U{' have limits -oo resp. oo; furthermore, the assumption Tr = oo and

Lemma 3.3.3 implies that the lower resp. upper bounds -fv(s)-Rvt' resp. fI(s)- Rvt of

U{' converge C' to -oo resp. oo. Hence the maps wv are defined with uniformly bounded
differential on balls centered at 0 of radii tending to infinity. Standard compactness for
pseudoholomorphic maps (e.g. [McSa, Appendix B]1 ) implies that a subsequence, still
denoted by (wv), converges C' to a J -holomorphic map w' defined on R2 . Its energy
is bounded by E, so after removing the singularity (using [McSa, Theorem 4.1.2(i)])
we obtain a J -holomorphic sphere T,: S 2 -+ M1 , which is nonconstant by (3.21).
Rescaling invariance of the energy and C' -convergence imply energy concentration:

-im ,nf)dl_"v2 > lim inf v w, i lim inf W,/*W1
~imin JBE (s",t") V-+OO B(s") V-+OO IBR v(o)nUv

.R2

> hs2 > 0.

(SO,S2): In complete analogy to (S1), rescaling by wv"(s, t) := vv"(sv+s/R", t"+t/Rv) yields a
nonconstant pseudoholomorphic sphere in Mt and with energy concentration of at least
hs2.

" If noncompact symplectic manifolds are involved, then one needs to establish C-bounds on the maps
before "standard Gromov compactness" can be quoted.
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(D01): We will obtain a disk bubble in M- x M1 with boundary on L0 1 by rescaling

w'(z) := "(s"' + L, -fV(s" + 8) +

to define maps

wU: {(st)I
wi: {(s,t)

- R"(p + s") 5 R"(p - s"), R"(-p + f"(s" + Ar)) t < O} -+ Mo,

- R"(p + s") R"(p - s"), 0 < t < 2R"f"(s" + 7)} -+ M1 .

In the case of straight seams t = f"(s) = J" the rescaled maps easily pair to maps w',
(s, t) - (w'(-s, t), w"(s, t)) E M- x Mi defined on increasing domains Brv(0) nfH with
r" -+ oo in half space, with boundary values in L0 1 , which by standard arguments converge
and extend to a pseudholomorphic disk. The squiggly seams require an easier version
of the arguments in (E012) to establish convergence w' -+ w', w' -* w' in C'(-H)
resp. C'((H) to nonconstant Jf*(s', 0)-holomorphic maps satisfying the Lagrangian seam
condition

(w0'(s, 0),w'(s, 0)) E L01 Vs E R.

Then w'(s,t) := (w0)(s,-t),w00(s,t)): H M - x M, is a nonconstant

J001 := (-Jo (s0,0)) x J( (s ,0)-holomorphic map with w'(aH) c Lo1. Its energy
is bounded by E, so after removing the singularity (using e.g. [McSa, Theorem 4.1.2(ii)])
we obtain a nonconstant J0

0 f-holomorphic disk Ui': D 2 -* M- x M1 . Energy quantization
in the case of straight seams is given by

lim inf
"-*oofe J,(Sv'tv)

> lim inf wV1* ((-wo) E wi)
1+0 Brv(0)nH 0

2woo * ((-wo) E wi) h D2,

and in the general case just requires more refined choices of domains as in (E012).

(D12): In complete analogy to (DOI), rescaling yields a nonconstant pseudoholomorphic disk
in

M- x M2 with boundary on L 12 and energy concentration of at least hD2.

(E012): We will obtain a figure eight bubble between L0 1 and L1 2 by a rescaling that
in the case of straight middle strips of width 2f = 6" -+ 0 amounts to wv (s, t) =
vo (s" + 6"s, 6"t) for f = 0, 1, 2. In the general case of squiggly strips, we straighten out
the strip by using an s-dependent rescaling factor in the t variable:

#"(s, t) := (s" + 2f"(s")s, 2f"(s" + 2f"(s")s) t). (3.22)

Note that 0" is a diffeomorphism between open subsets of R2 since f" >
pulls back the seams S+ = {(x, y) E R2 I = f(x)} to straight seams

{(s, t) E R2 It = i1} as in Definition 3.2.5 of the figure eight bubble.

0, and that it

(#")-1(S1) =
Moreover, the
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rescaled quilt maps (w")t=o,1,2 have the total domain

= (st) E R2 < S < 2fLV(sL) 2 sP+2fL(s")s)}

Since sv -+ s' E (-p, p) and f" -> 0, we can find a sequence of radii r" -+ oc so that
these domains contain the balls Brv (0). In the case of straight seams the maximal radii
are r" = (p - Is1)/ 6 , but we may also choose smaller radii rv -+ oc so that in addition
rvP -+ 0. In general we choose r' -+ oo so that Brv(0) C (")- 1 ((-p, p) 2 ) and

r" max (f"(s) + (fv)'(s)) -- + 0. (3.23)
sG[-p,pI V-o0

Finally, we wish to choose rv -+ oc such that in addition the inclusion "(Brv(0)) C
Bev(sV, tw) ensures that the gradient bounds (3.17) transfer to the rescaled maps. For
that purpose first note that for sufficiently large v E N from (3.23) we also obtain the
estimate

max 2fv(s" + 2f"(s")s) 3f"(sv). (3.24)

Indeed, for s E [-rV, rv] and v sufficiently large such that r"II(fv)'Ico([-P,P]) < - we have

f" (sv + 2fv(sv)s) 5 f"(s") + j 2fv(s") (fv)'(sv + 2fv(sv)s) ds

f"(s") (1 + 2r"II(fv)' Ico([-pp])) K 1fv(sv)-

Next, for (s, t) E Bru (0) we obtain

(s" + 2f"(s")s, 2fv(sv + 2fu(s)s)t) - (s', t")I 1(2fv(sv)s, 2fv(s" + 2f"(sv)s)t)I

+ (0, t")I
< 3rvf"(sv) + It"|

3rv(7 T - T) + Ir + 7l V
2RcvE

from (3.24) and the identities

f"(s") = +2- 2/ - . (3.25)
2Rv' 2Ru

Thus to obtain the inclusion # (Br, (0)) C Be, (sv, t") for large v it suffices to replace the
above r" by a possibly smaller sequence r" - oc so that 3rv(Tr! - 7T7) I + 1 < 2R"E"

for large v. This is possible since RvEv -+ oo and 4f --+ -T7 E R. So from now on,
after dropping finitely many terms from the sequence, we are working with a sequence
of rescaled quilt maps (3.22) together with a sequence rv -4 oc so that we have the
inequalities (3.23), (3.24), and the inclusions

#v(Bru(O)) C Bv(s",tV) n (-p,p)2 . (3.26)

Thus, restricting the maps from (3.22) to the balls Brv(0) of increasing radius amounts
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to considering the quilt map wt': Wi' -+ Me with the domains

These maps are (UK, j")-holomorphic, where J,' = J, o q' are the almost
tures on Me with appropriately rescaled domain dependence, and j" is the
ture

j"(s, t) (d#"V(s, t)) o jo o do'(s, t)

2fV(sV) 0
4f"(sV)(f')'(s" + 2fV(sV)s) t 2f"(s" - 2f"(sV)s)

( 2f V(sv)
4fv(sV)(f )'(sv + 2fV(s")s)

(2 fv(s )) -1

(f I(sv...)t

0

(2f"(s" + - )

( 4fV(s)(fV)(s "+ - ) t
2f /(sv)

-2t(fv)'(sv + 2f"(s")s)

f (sV) (4t2(f )I(sz+2fv(sv)s)2+1)
f IJ(s-+2f -s-v~s)

t J')' (S) T,"(s)
f"(O) fV(O)

t2(f)'(s)2+fv(0)2 t(fy)'(s) '

fv(0) f(s) fvLI(0)

- f~s 2f (s")s)
f 2 (S)s

2t(fV)'(s' + 2fV(sv)s)

complex struc-
complex struc-

S 0 -1
1 0 X

0
2fV(sV + 2fv(sv)s) )
2f v(sv + 2fv(sV)s))

where we abbreviate f"(s) := fv(sv + 2fV(sV)s)/2fv(sV). Note that Lemma 3.3.3 with
v :=(2fv(sV))- implies jV -+ i in C1 e, and the almost complex structures also converge

J-+ J (s', 0) in C"O since #"(s, t) -3 0 for any fixed (s, t). Moreover, the maps wv'
satisfy the Lagrangian seam conditions

Vs E (-rV, rV).

The gradient blowup at (sV, tV) in (3.17) translates into lower bounds on the gradient

IdwvI := (IdwI -+ Idw'I + Idw'I) 1/ 2 at t = "V 2f"s") = 2 - 2(r -r ) E R,

since o"(0, 2f sL)) = (s, t") and hence

dwV(0, ") 12 = (2fv(s"8)asv (s", tV) + 4tf"(s")(f")'(s")atovg(s", tV) 2

+ |2f"(s")Otvf(s, t"1)

3 dv(sv, tv)1 2 , V >> 0.

Now by tV -+ t', the obedient convergence f" -> 0 in Definition 3.2.2, and (3.25) we
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Wi" : Br-(0) n (R x [-,]),

W2 : BrL/(o) n (R x[, oo)).

(WO'(s, -), W'(s, -- )) ELoj, (W'(S, !), Wv(s, )) EL12



obtain a nonzero lower bound for sufficiently large v,

dwv(0, tv)j2 2 2fv(s")2 dvv(st) 2 
= > _ I V)2 > (o o)

2 > 0. (3.27)

Next we use (3.23)-(3.26) to transfer the upper bound in (3.17) to the gradient of the
rescaled maps for sufficiently large v,

sup Idw"(s, t)1 2

(s,t)EBrv (0)

sup S 2f"(s") 8 vv(#s"(s, t)) + 4tf"(s")(f")'(s" + 2fv(s")s)&tvj (#"(s, t))12

(s,t)EB, v (0) + 2f"(s" + 2f"(s")s)tvv(#"(s,t)) 2

5 ((2f"(s") + 4r"f"(s") max I(f/)'(s)I) 2 + (3fV(s")) 2 ) sup Idv(x, y)I 2

sE[-p,p) (X,y) EB& v(sv,tP)

< 18f"(s") 2  sup ldv(x, y)1 2 < 18(r+ - Tr) 2 . (3.28)

Using these gradient bounds (and the compact boundary conditions in the case of non-
compact symplectic manifolds), standard Gromov compactness asserts that after passing
to a subsequence, w' resp. wv resp. wv converge C' on the interior of R x (-00, -1/2]
resp. R x [-1/2,1/2] resp. R x [1/2, oo).

To obtain convergence up to the seams R x {t1/2}, we will first prove convergence of
somewhat differently rescaled maps. More precisely, to prove convergence of w', wv near
the L0 1-seam R x {-1/2} we consider the maps

uO: UO := (-r", r") x (-1/2, 0] -+ M0 , u : Uf := (-r", rv) x [0, 1/2) -+ Mi

given by rescaling uv'(s, t) := ('<(s + it)) with the holomorphic map

b"(z) := " + 2f"(s")z - iF"(s" + 2f"(s")z),

where we identify (s, t) e R 2 with z = s + it E C, and F" is the extension of f" from
Definition 3.2.2. To see that /"' is well-defined on UO' U U{' for sufficiently large v, despite
fv resp. F" only being defined on [-p, p] resp. [-p, p] 2 , note that s" -+ s' E (-p, p)
and rvfv(sv) -+ 0 by (3.23). To ensure that uv is well-defined for large v and f = 0, 1
we moreover need to verify that O"(U,) lies in the domain of vv. Indeed, firstly we have

~"(Ug" U') c (-p, p)2 for large v by s" -+ s' E (-p, p), (3.23), and F" 0. Secondly,
the bounds required by the seams are

im ?P"(s + it) < -f"(re 0"(s + it)) V s + it E Uo, (3.29)

Jim O/"(s + it) I f"(re 0"(s + it)) V s + it E U' (3.30)

for large v. For that purpose we rewrite

im "'(s + it) f"(re 0"(s + it))

= 2tf"(s") - re F"(s" + 2f"(s") (s + it))

f"(s" + 2f"(s")s + im F"(s" + 2f"(s") (s + it)))

= (2t - 1 t 1)f"(s" + 2f"(s")s) + Ev (s, t) - re E (s, t) E'(s, t).
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with

Ej'(s, t) = 2t(f"(sv) - fv(sv + 2f"(s")s)),

El(s, t) = F"(s" + 2f"(s")(s + it)) - F"(s" + 2f"(s")s),

E'(s, t) = f Is + 2f"(s")s + im F"(s" + 2fv(sL) (s + it))) - f"(s" + 2f"(s")s).

We can bound E', El, EK for large v and (s, t) E UO' U U" C B2,1 (0), using the obedient
convergence f" -> 0 from Definition 3.2.2,

IE'(s, t)I 4tj(f")'Ilcof"(s")s < 8tr"II(f")'lIcoCof"(s" + 2f"(s")s), (3.31)

IE'(s, t)I 11DF"Lco2tf"(s") 5 2tIIDF"Ilco Cof"(s" + 2f"(s")s), (3.32)

|E"(s, t)I ||(f")'||coIim F"(s" + 2f"(s") (s + it))| (3.33)

= II(f")'llco im(F"(s" + 2f"(s")(s + it)) - F"(s" + 2f"(s")s))

" Jj(f")'jjCo llDF"jjCo 2tf"(sv)

" 2tll(fv)'Ilco||DFVIcoCofv(s" + 2fv(sV)s).

Then by (3.23) and F" 0 we obtain for sufficiently large v

im 4"(s + it) f"(re4"'(s + it)) - (2t - 1 1)f"(s" + 2f"(s")s) tf"(s" + 2f"(s")s).

To check (3.29) from this, recall that t E (-1/2, 0] on Uo' so that

im,0"(s + it) + f"v(re4,"(s + it)) tf"(s" + 2fv(sv)s) _< 0.

Similarly, on Uv we have t E [0, 1/2) so that (3.30) follows from

f"(re o/(s + it)) im 4"(s + it) (1 - t (2t - 1)) f"(s" + 2f"(s")s) 0

since f" > 0, 1 - t - 2t + 1 = 2 - 3t> 0 and 1 - t + 2t - 1 = t > 0.

Now that u", u" are well-defined, note that the advantage of this rescaling is that the
resulting maps are pseudoholomorphic with respect to the standard complex structure i

on their domains (viewed as subsets of C). On the other hand it straightens out only one
seam,

Ob ((-r", rv) x {0}) = { (s" + 2f"(s")s, -f" (s" + 2f"(s")s)) Is E (-r", r")}

c {(x, y) E RI 2 y=-f (x) =

so that we obtain the Lagrangian seam condition

(uo (s, 0), u"(s, 0)) E Lo, V s E (-r", rv)

but the L 12 -condition would hold on the curved seam (0v)~ 1 (S+). However, we use this
rescaling only to prove convergence near the L0 1-seam, and to prove convergence of w', w"

near the L 12 -seam would use the rescaling z -+ s" + 2f"(s")z + iF"(s" + 2f"(s")z).
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More precisely, we will below prove C" -convergence of u' near R x {0} since this yields
control of the maps of interest w' for e = 0,1 near the seam R x {-j}. Indeed, w' =

U" o (("v)-l o o") is obtained from u' by composition with the local diffeomorphisms
( q5" which by Lemma 3.3.3 converge C' to a shift map. On the other hand, to

establish convergence of the u', we can start from local uniform gradient bounds given by
(3.28) via the reparametrization with (0")--1 o #". Further, we can work with the "folded"
maps u',: (-rv, r") x [0,1/2) -+ M- x MI given by u 1 (s, t) := (uv(s, -t), u"(s, t)).
These satisfy the Lagrangian boundary condition ug1 (s, 0) E Lol for s E (-r", r') and are
pseudoholomorphic with respect to Kov(st) := (-J (4"(s --it))) x J)(,1/(s+it)), which
converges to Ko := (-J0 (s ,0)) x J (s ,0) in C'. Now standard compactness for
pseudoholomorphic maps implies that after passing to a subsequence, (u01 ) converges C'
on R x [0, 1/2), and as discussed above this implies C'-convergence for the corresponding
subsequence of wg, w" near the L0 1-seam R x {-1/2}.

An analogous argument shows that w', w' converge C' near R x {1/2}, so we have now
shown that wv, wI, w' converge C' everywhere to a (J (s , 0), J.(s , 0), J2(so, 0))-
holomorphic figure eight bubble w' between L0 1 and L1 2 . The lower gradient bound in
(3.27) implies that w' is nonconstant and hence has nonzero energy, hence by Lemma 3.2.8
has energy at least h8 > 0. Finally, rescaling invariance and C e-convergence imply energy
concentration of at least h8 at (SN+1, 0):

lim inf l1d Iv > liminf WgWe >_ dw"|2 > h8 > 0.
V-400 JB,,"(SV,t") - V_ 0E{O,1,2} Ue" I >2

(D02): We will obtain a squashed eight bubble in M0 2 with boundary on La1 o L 1 2 by
rescaling

WV (s, t) := oS Vs +S )t

where we have set f"(S) := Rvfv(s" + s/R), to obtain maps

wo : Uo" := {(s, t) I- R" (p + sv) s < R'(p - s) PRf v ( 0) v(0)} -4 M0 ,

wV: := {(st) I - R"(p + s") s < Rv(p - sv), -f"(0) t < f"(0)} - M,

w2: U2 := {(s,t) - R"(p + sv) <s < R"(p - s), f"/(0) < t < pRfv(0) } -- M2.fV(s)

Each w' is pseudoholomorphic with respect to (Jy(s, t), j'), where the almost complex

structure Jt'(s, t) := Jt(sv + s/R", f"(s)t/f"(0)R") converges C' to := J (s), 0)
and the symmetric complex structure jV on Uov U U' U U2 c R2( t(f~v)'(s) ____(_)

( V (0)~ ~V(0)
'V S t2 (j")'1(8) 2 +J,(0) 2 t (f )' (8)

fV(O)fV(s) "o(0)

converges C' to the standard complex structure by Lemma 3.3.3 with aV := R". The
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maps w' also satisfy the Lagrangian seam conditions

(WO (s, -f"'(0)), W'(s, -f"'(0))) E Loi, (w" (s, f"'(0)), W'(s, f"'(0))) E L12

for all s in (-R"(p + s"), R"(p - s')). By the C' -convergence f"/(s)/f"(0) -+ 1 proven
in Lemma 3.3.3, we may choose a subsequence and r" -+ oc with r" < R'E"/4 such that
we have

I1f"(S)/f"(O)IIC1((-r-,r')) < 2 (3.34)

for v sufficiently large. This allows us to translate (3.17) into upper and lower bounds on
the energy density Idw"j for sufficiently large v,

jdw "(0, RLt")j 1 j(dLz"(s",t")j > 1,
sup d~w"(s, t) sup yId"(s, t) 8.

(s,t) E Brv (0) (st) E B&v (s 1,t I)

Here we estimated #I&svg| - VVYI &vO'| K |Vw' + \dv', used theRvRv f v(0)RfL()

identity ttw =t, and need to check that (s, t) E Brv(0) implies (s +

7, 7) E By(s', t') for sufficiently large v. Indeed, (3.34) yields:

- t tv) I/ cy < + n < .+ T , (3.35)

where Rc"E -+ oo and 4r --+ T ' E R. Next we consider the limiting behaviour of
the domain U6' U U{' U U2. Its straight boundaries diverge -R"(p + s") -+ -oo resp.
R'(p - s) -+ oo since sL -+ so E (-p, p). The functions pR"fv(O)/f"(s) of the
upper/lower boundary converge C' to oo resp. -oo by Lemma 3.3.3 with av := R" and

R' -+ oc. Finally, the straight seams {t = f"(O)} shrink to a single seam {t = 0} since
we have f V(0) = j(r - TY) -+ 0.

Now we may apply Theorem 3.2.9 to this strip shrinking situation to deduce that after
passing to a subsequence, (wU(s, t-fj(0)) resp. (wv(s, t+f"(0)) converge in C'(-H) resp.

CjC(H) to J01- resp. J2-holomorphic maps w' resp. w', and that (wIlt=o) converges in
C' (R) to a smooth map w'. Furthermore, at least one of w', w2 is nonconstant, and the
generalized seam condition (wo (s, 0), w' (s), wo (s), w (s, 0)) E Loi XM, L 1 2 is satisfied
for s E IR, so that (w, w2 ) is a nonconstant squashed eight bubble with boundary on
LO, o L 12 , with energy bounded below by hLojOLj,. Finally, rescaling invariance, Co-
convergence, and the containment proven in (3.35) imply energy concentration:

lim inf Id-2_" 2 > lim inf vi *we lim inf w Wi
V*00 JBev (sv,t,) V_+0 RE02 BEV (SL", V+00 E{0,2} fBr L(0)fEe{0,2}

> w W hLojoL12 -
fE{0,2}

This ends the construction of a nontrivial bubble in the this last case, (D02), and thus
finishes the iterative construction of a subsequence and blow-up points so that (0), (2),
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and (3) hold. To establish the C' -convergence on the complement of the blow-up points
claimed in (1) we will apply Theorem 3.2.9 to quilted domains that make up rectangles in

(-p, p) 2 N{zl,.. ., zN}-

Standard elliptic regularity implies that v'(s, t - f"(s)) resp. v" (s, t + f"(s)) converge
C' on the interior of their domains (-p, p) x (-p, 0]-Z resp. (-p, p) x [0, p)-Z. To extend
this convergence to the boundary and to establish convergence of v'(s, 0), fix a point (o, 0)
in (-p, p) x {0} Z, and define three maps by rescaling v' for f = 0, 1, 2 and straightening
the seams:

wj(s, t) := VV (o + s, fv(s+o))

For r > 0 sufficiently small, these maps form a squiggly strip quilt of size (f"(a), r), which
is (Jo, Jjv, J2, jv)-holomorphic for Jt' and jf the pulled-back almost complex and complex
structures

(f")'(s+a) t (s+o)
4 V (s, t) := J ((a + jV (s, t) := (f " s+o ) + (o 2 (f ") s ) T

7 =FT) "(fo "(S+-)t+ V f(yfa) f V(+0 , 0

The obedient shrinking fv => 0 and the Arzela-Ascoli theorem guarantee that after passing
to a subsequence12, f"(s + a)/fu(o) converges in Cj.; therefore J' and jV converge in C'

to almost complex and complex structures Je and j'. As long as r was chosen to be small
enough, the bound I1i~ - illco < e holds (where e is the constant appearing in Thm 3.2.9),
so Theorem 3.2.9 implies that w'(s, t - f'(a)), w (s, 0), wv(s, t + fu(a)) converge C' to
smooth maps w', w', wr that satisfy a generalized seam condition in Loi x M, L 12 . Since
f"v(s+o)/fL/(a) converges C', we may conclude that vv'(s, t-fv(a)), vo'(s, 0), vo'(s, t+fv(o))
converge C' on a neighborhood of (a, 0), and the limit maps satisfy a generalized seam
condition in L01 xM L 12 . We established convergence away from (-p, p) x {0} earlier, so
we have now proven (1). This finishes the proof of Theorem 3.3.1.

Remark 3.3.4. The purpose of this remark is to discuss the minimal assumptions which allow
one to apply Theorem 3.3.1 to symplectic manifolds M0 , M1 , M 2 that are not compact.
If the Lagrangian correspondences are compact, then - unlike the "bounded geometry"
assumptions in [WeWol] - we do not explicitly require uniform bounds on metrics and
almost complex structures (which were used in [WeWol] to show energy concentration in a
sequence of pseudoholomorphic maps with unbounded gradient). Instead we need to ensure
convergence of maps which result from rescaling near a blow-up point of the gradients of
a sequence of pseudoholomorphic maps. If the rescaled domains contain boundary or seam
conditions, then compactness of the Lagrangians implies C-bounds so that the rest of our
arguments applies in a precompact neighborhood of the Lagrangians. If the rescaled domains
do not contain boundary or seam conditions, or if the Lagrangians in the boundary or seam
conditions are noncompact, then C-bounds must be obtained a priori from some special
properties of the symplectic manifold or Lagrangians.

Note that the C-bounds are not merely technical complications - in general, nontrivial
parts of sequences of pseudoholomorphic curves can and will escape to infinity, at best
yielding punctures and SFT-type buildings in the limit. One way to achieve C 0-bounds
would be to work with completed Liouville domains and Lagrangians which are cylindrical

12 For those choices of (f") that arise from natural geometric situations - e.g. from the figure eight bubble
- we expect convergence directly, i.e. without passing to a subsequence.
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at infinity, as in Abouzaid-Seidel's definition of the wrapped Fukaya category in [AboSe].

Footnotes 6 and 11 point out the main instances where the specific geometry would have

to be considered when dealing with noncompact manifolds. When working with noncompact
Lagrangians, one would have to make additional assumptions - such as "bounded geometry"
for symplectic manifolds and Lagrangians - to guarantee uniformity of the elliptic estimates

in [Bol].

3.4 Boundary strata and algebraic consequences of
strip-shrinking moduli spaces

The purpose of this section is to analyze the expected boundary stratification of strip-
shrinking moduli spaces and from this predict the algebraic consequences of figure eight
bubbling. While we make an effort to provide convincing arguments for the more surprising
features, this part of our exposition will be rather cavalier - aiming only to explain the rough
form of what we expect to be able to make rigorous. In particular, all Floer cohomology
groups will be considered as ungraded and with coefficients in the Novikov field defined over

Z2 , which should be valid as long as sphere bubbling can be avoided. We ultimately expect
a fully-fledged graded theory with Novikov coefficients defined over Q (resp. over Z in the
absence of sphere bubbling).

3.4.1 Boundary stratifications and their algebraic consequences

One of the intuitions in the treatment of pseudoholomorphic curve moduli spaces is that
sphere bubbling is "codimension 2" and disk bubbling is "codimension 1". We give a more
rigorous statement of this intuition in the polyfold framework and explain its algebraic
consequences in Remark 3.4.1 below, and will argue that, in a similarly imprecise sense,
figure eight bubbling is "codimension 0" within the "zero-width boundary components" of
quilt moduli spaces involving a strip or annulus of varying width.

Remark 3.4.1 (Codimension and algebraic contribution of sphere and disk bub-
bles). In the polyfold setup for pseudoholomorphic curve moduli spaces (whose blueprint
is given in [HoWyZel] at the example of Gromov-Witten moduli spaces), the compactified
moduli space is cut out of the ambient polyfold by a (polyfold notion of) Fredholm section,
which arises from the Cauchy-Riemann operator. Transversality while preserving compact-
ness can then be achieved by adding a small, compact (possibly multivalued) perturbation,
which is supported near the unperturbed moduli space. This equips the perturbed moduli
space with the structure of a compact (possibly weighted branched) manifold. For exposi-
tions of this theory see e.g. [Ho, HoWyZe2, FaFiGoWe].)

An important feature of the ambient space is that there is a sensible notion of "corner
index" - a nonnegative integer associated to each point in the polyfold, so that the points
of corner index 0 resp. resp. > 2 should be thought of as the interior resp. smooth part of
boundary resp. corner stratification. The transverse perturbation can be chosen compatibly
with corner index, so that a Fredholm index 0 section gives rise to a perturbed moduli space
lying in the interior of the polyfold, and a Fredholm index 1 section gives rise to a perturbed
moduli space whose boundary is given by the intersection of the zero set with the smooth

(corner index 1) part of the polyfold boundary. The index 0 components of the perturbed
moduli space are then typically used to define an algebraic structure, whose algebraic rela-

tions arise from the fact that the Fredholm index 1 component has nullhomologous boundary
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corresponding to algebraic compositions of Fredholm index 0 contributions. More precisely,
the sum over the algebraic contributions of each boundary point is zero, and since these
boundary points are given by the zero set of the section restricted to the smooth part of the

boundary of the polyfold, the algebraic relations are given by a sum over these boundary
strata.

It turns out that interior nodes do not contribute to the corner index, and in particu-

lar that curves with sphere bubbles and no other nodes are smooth interior points of the
polyfold. This can be understood from the gluing parameters (Ro, oc) x S' used to describe
a neighborhood of the node. The corresponding pre-gluing construction provides a local
chart for the polyfold, in which the gluing parameters get completed by {oo} to an open
disk, which contributes no boundary. On the other hand, gluing at a boundary node or a
breaking is described by a parameter in (Ro, oo), which gets completed by {oo} to a half-
open interval, so that pre-gluing in these cases provides local charts in which parameter oc
indicates a contribution of +1 to the corner index. Hence each boundary node (e.g. from
disk bubbling), each trajectory breaking (as in Floer theory), and each extra level of build-
ings (in SFT) contribute 1 to the corner index. This explains why sphere bubbling does not
contribute to algebraic relations of the type discussed here, and instead it is the curves with
exactly one boundary node (e.g. one disk bubble) or one breaking which contribute to the
algebraic relations.

Following the above remark, we need to analyze the boundary stratification of the poly-
folds from which the strip-shrinking moduli spaces are cut out in order to predict the alge-
braic consequences of figure eight bubbling. For that purpose we describe in the following
the pre-gluing constructions that provide the local charts near figure eight and
squashed eight bubbles:

" Gluing a figure eight into a pseudoholomorphic quilt has to go along with introducing
an extra strip of width 6 > 0. Since figure eights do not have an S1 symmetry, it then
remains to fix the length of neck between the bubble and the quilted Floer trajectory.
However, this gluing parameter in (Ro, oc) is in fact fixed by the choice of width 6 > 0, as
illustrated in Figure 3-1. Hence, while figure eight bubbles can only appear on the 6 = 0
boundary, they do not contribute to the corner index. This means that a 6 = 0 quilted
Floer trajectory with any number of figure eight bubbles will still just have corner index
1. Indeed, the figure eights can only be pre-glued simultaneously since their neck-lengths
must all be given by the same strip width 6 > 0.

" The configuration of a squashed eight bubble with seam in Lo, x M1 L 12 attached
to a 6 = 0 quilted Floer trajectory has corner index 2 since it can be glued with two
independent parameters. Indeed, the pre-gluing construction is to first widen the seam
in both the base and the bubble to strips of independent widths 6 E [0, 1) and E E [0, 1)
(turning the squashed eight into a figure eight in case c > 0), and to then pre-glue the
resulting bubble into the quilt with a gluing parameter R E (Ro, oc]. Here the strip
width 6 is determined by (R, c) as follows: Pre-gluing with R = oo, E > 0 yields a (only
approximately holomorphic) figure eight attached to a middle strip of width 6(o0, E) = 0
whereas R < oo, c = 0 produces a (approximately holomorphic) quilted Floer trajectory
with middle strip width 3(R, 0) = 0. Positive strip width 6(R, 6) > 0 is achieved only
with R < o, E > 0, providing the interior of the chart.
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R = oo R E [1, 00)

Figure 3-1: A figure eight bubble can be glued to a marked point on a double strip indicated

in the left figure. This is done by first fattening the seam in the double strip to a new

middle strip of width 6 and centered puncture at the old marked point, then overlaying

a neighborhood of this puncture with a neighborhood of the figure eight singularity in

cylindrical coordinates, and finally interpolating between the maps on the new domain.

In this construction the neck-length parameter R is determined by the strip width 6, as

illustrated in the right figure: Since the seams are not straight in cylindrical coordinates,

the relative shift between bubble and triple strip is determined by the positions of the seams

having to match. Note that these figures illustrate the domains of the respective maps, not

their images.

o Similarly, a disk bubble with boundary in L01 or L12 attached to a 6 = 0 quilted Floer

trajectory has corner index 2 since the length of the gluing neck is independent of the

width 6 > 0. In fact, in our tree setup there would be a constant figure eight between

the disk and Floer trajectory, so that the gluing parameter is used to pre-glue the disk

into the figure eight, and the width parameter pre-glues the resulting figure eight into the

Floer trajectory.

Remark 3.4.2 (Boundary stratification of strip-shrinking moduli spaces). The gluing

construction for squashed eights above indicates that the closures of the two top boundary

strata given by 6 = 0 quilts with one figure eight bubble (i.e. R = 00, C > 0) and by 6 = 0

quilts with no bubbles (i.e. R < oc, e = 0) intersect in a corner index 2 stratum consisting

of 6 = 0 quilts with one squashed eight bubble (i.e. R = oc, E = 0). To see how a sequence

of 6 = 0 quilts with one figure eight bubble can converge to a 6 = 0 quilt with one squashed

eight bubble, note that the moduli space of figure eight bubbles has a boundary stratum

in which all energy concentrates at the singularity, so that rescaling yields a squashed eight

bubble attached to a constant figure eight.

Note here that different choices of rescaling yield constant figure eights with different

values - namely any seam value of the squashed eight except for its value at infinity. Thus

the resulting figure eight here is a true "ghost eight" in the sense that its value would be

determined by the choice of a marked point on the squashed eight; however we do not make

a specific choice. In fact, a constant figure eight with no further marked point (except at

its singularity, where the squashed eight is attached) would not be stable. We will however

include these ghost eights as stable figure eight vertices when describing the bubble trees as
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colored ribbon trees.
Let us compare this to the fact that a disk bubble with boundary on LOi or L1 2 attached

(via a constant figure eight) to a J = 0 quilted Floer trajectory lies in the intersection of
a stratum of 6 > 0 trajectories with disk bubble and a stratum of 6 = 0 trajectories with

figure eight bubble. In the first stratum the width goes to zero at the corner, whereas in the
second stratum the figure eight converges to a constant figure eight with disk bubble. In this
case, however, the constant value of the figure eight is uniquely determined by its attaching
point on the quilted Floer trajectory, and the figure eight is stable due to the marked point
at which the disk is attached.

3.4.2 Strip shrinking in quilted Floer theory for cleanly-immersed geo-
metric composition

With this framework in place, we now analyze the boundary stratification of a specific
strip-shrinking moduli space, from which we will obtain specific algebraic predictions in
Section 3.4.4.

The isomorphism between quilted Floer homologies (2.1) under monotone, embedded
composition is proven by applying the cobordism argument in Remark 3.4.1 to a moduli
space of quilted Floer trajectories with varying width 6 E [0, 1] of the strip mapping to
M1 . Here the boundary arises from the strip widths 6 = 0 and 6 = 1, since other bubbling
or breaking is excluded by the monotonicity assumption. Recall however that this bubble
exclusion fails even in monotone cases as soon as the geometric composition is a multiple
cover of a smooth Lagrangian (as in many examples of interest, e.g. [We2]). In order to
obtain a result that allows for general symplectic manifolds and Lagrangians and cleanly-
immersed composition Lo, o L12 , we need to study the boundary strata of the polyfold
which provides an ambient space for a general compactified moduli space of quilted Floer
trajectories with varying width. In addition to breaking and bubbling (of disks, squashed
eights, and figure eights), the ends of the interval [0, 1] contribute to its corner index. Based
on the previous analysis of gluing parameters, we predict that the top boundary strata
of the Gromov-compactified strip-shrinking moduli space (the strata with corner
index 1) are the strata of the following types:

(BI) quilted Floer trajectories for 6 = 1;

(B2) once-broken quilted Floer trajectories for 6 E (0, 1);

(B3) quilted Floer trajectories with one disk bubble on a seam for 6 E (0, 1);

(B4) quilted Floer trajectories for 6 = 0 with generalized seam condition; 13

(B5) quilted Floer trajectories for 6 = 0 with any number of figure eight bubbles. 14

Within each such boundary component we may also find curves that include trees of sphere
bubbles. Furthermore, contributions from (B2) and (B3) necessarily involve curves that for

13 Since the Lagrangian LO, o L 12 is in general just a clean immersion, we require not only that the
corresponding seam gets mapped to the composed Lagrangian, but we require this map to lift continuously
to Loi x M, L 12 , and include the lift as data of the Floer trajectory.

14 In this case, the generalized seam condition requires a lift to Loi x M, L 12 that is continuous (and hence
smooth) on the complement of the bubbling points, and at each bubbling point is possibly discontinuous in
a way that matches with the limits lim, ,, wi (s, -) of the figure eight.
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fixed 3 are not cut out transversely, i.e. these contributions come from a finite set of singular
values of 6 E (0, 1).

To argue for our prediction, in particular the necessity of allowing figure eight bubbles
in (B5), from a more geometric perspective, let us go through the rather silly example
of shrinking the strip in standard Floer theory for a pair of Lagrangians Loi C pt xMI
and L12 C MT x pt. In this case, the boundary component (B1) represents the Floer

differential. The boundary components (B2) and (B3) will be empty, since the Cauchy-
Riemann operator for each 3 > 0 is just a rescaling of that for 3 = 1, and hence all can be
made regular simultaneously. Hence the Floer differential must coincide with the algebraic
contributions from (B4-5). Indeed, each Floer trajectory can be viewed as a figure eight
bubble by Example B.0.7, and in this case is attached to the constant Floer trajectory
in pt x pt. Broken Floer trajectories are excluded for index reasons. More evidence for
the necessity of (B5) are the Floer homology calculations in [We2] between Clifford tori
and RP" C CP' resp. the Chekanov torus in S 2 x S2 using strip shrinking for multiply
covered geometric composition, where bubbling can only be excluded for classes of Floer
trajectories whose limits are not self-connecting. Nonzero results for the corresponding
entries of the differential from other calculation methods then indirectly show nontrivial
figure eight contributions.

At this point, a reader comfortable with evaluation maps into appropriate spaces of chains
may skip to the algebraic consequences in Section 3.4.4. However, we will construct these
algebraic structures from the following more complicated moduli spaces that will simplify
both our analytic and algebraic work, and also serve to further solidify our prediction of
boundary stratifications.

3.4.3 Morse bubble trees arising from strip-shrinking moduli spaces

To capture the algebraic effect of figure eight bubbling in terms of Morse chains on Lo, xm,
L1 2 , we will extend strip-shrinking moduli spaces by allowing Morse flow lines between figure
eight, squashed eight, and disk bubbles15 . This will be achieved by organizing the tree of
bubble vertices and Morse edges into a colored metric ribbon tree (as introduced in [MaWo,
Def. 7.1]) whose root is the base quilt in which the strip was being shrunk. This approach
is analogous to constructing the Ao-algebra of a single Lagrangian submanifold via trees of
disk vertices and Morse edges1 6 which we sketch in the following Remark before explaining
its generalization to strip-shrinking moduli spaces.

Remark 3.4.3 (Polyfold setup and boundary stratification for trees of disks with
Morse edges). Consider a single disk bubble attached by a marked point to e.g. a Floer
trajectory. If we enlarge the moduli space by Morse flow lines between nodal pairs of
boundary marked points, then boundary strata with length 0 flow lines cancel strata with
boundary nodes and we obtain a compactified moduli space of metric ribbon trees whose
root is the attaching point, vertices are represented by pseudoholomorphic disks (modulo
appropriate reparametrizations which we will not discuss), and edges are represented by
generalized Morse trajectories (including broken trajectories that compactify the space of
finite length Morse trajectories) that are directed toward the root.

" Here we identify quilted spheres with two patches in Mk and Mk+1 with disks in M j x Mk+,; see
footnote 1.

16 This has been a partially realized vision in the field for a while. Formally, it follows the A, perturbation
lemma [Se, Prop. 1.12] for transferring an A,-structure on a space of differential chains to the space of Morse
chains. A related moduli space setup was proposed in [CoLa] but with a different algebraic goal.
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In [LiWe], assuming the absence of sphere bubbling, this moduli space is described as
the zero set of a Fredholm section in an M-polyfold bundle. This section is given by the
Cauchy-Riemann operators on each vertex together with the matching conditions for each
edge between the endpoints of the Morse trajectory and corresponding marked point evalu-
ations of the disk maps. The ambient M-polyfold is the space of trees in which vertices are
represented by (reparametrization equivalence classes of) not necessarily pseudoholomorphic
maps and edges are represented by generalized Morse trajectories. Nodal configurations with
edge length 0 are interior points of this space by pre-gluing of the nodal disks into a single

vertex (this is made rigorous in terms of M-polyfold charts arising from the pre-gluing con-
struction). Hence the boundary stratification of this space is induced by the compactified
space of Morse trajectories - which was given a smooth structure in [We4], with corner
index equal to the number of critical points at which a trajectory breaks.

Now the arguments of Remark 3.4.1 yield an algebraic structure from counting isolated
solutions whose relations are given by summing over the top boundary strata (those with
corner index 1). In this case, adding incoming Morse edges from input critical points yields
a curved A,-algebra because the top boundary strata - configurations with exactly one
broken trajectory, i.e. edge of length oo - correspond to the top boundary strata of a
space of metric ribbon trees. The stable trees in the latter realize Stasheff's associahedra,
so that the boundary strata yield the Ao,-relations with the exception of terms involving

p1 or go. These additional terms arise from breaking into two subtrees of which one is
unstable with zero or one incoming Morse edge. Similarly, considering Floer trajectories
for pairs of Lagrangians (or quilted Floer trajectories) with several bubble trees (on each
boundary component resp. seam) yields the relations for the Floer differential coupled with
the A,-algebras of the Lagrangians.

Sphere bubbling can be included here by extending the ambient space of disk maps
and Morse edges to allow for trees of spheres attached to the maps. This introduces the
additional complication of isotropy, turning the ambient space into a polyfold (M-polyfolds
are a special case with trivial isotropy) and forces the use of multivalued perturbations, thus
yielding rational counts. However, as discussed in Remark 3.4.1, this does not affect the
boundary stratification and algebraic consequences.

Ignoring sphere bubbling as above, we introduce Morse flow lines into strip-shrinking
moduli spaces in two stages: First, we allow for Morse edges between disk bubbles and the
domain in which they occurred. As in Remark 3.4.3 this captures disk bubbling on seams
in an algebraic coupling with the curved A,-algebras generated by Morse chains on the
Lagrangian correspondences that are not involved in the strip shrinking. If such a tree of
disks was attached to a seam in the quilt for 5 > 0, then in the 5 = 0 limit we represent
it by a tree attached to the respective seam of a constant figure eight bubble. We then
begin the second stage of extending the strip-shrinking moduli space by introducing Morse
flow lines on Lo, x M1 L 12 between the quilt and figure eights. Since a zero width strip
with any number of figure eight bubbles is a corner index 1 boundary point, we need to
extend with a single normal parameter, so take all Morse edges of the same length -8. This
extends the strip width parameter from 3 E [0, 1] to 6 < 0, and to compactify the resulting
extended moduli space we allow for Morse breaking (simultaneously for each figure eight)
as 5 -+ oo but also need to take into account that besides disk bubbling (which is dealt
with as before) we may have squashed eight bubbles appearing by energy concentration on
the base quilt or at the singularity of a figure eight bubble (as in Remark 3.4.2, with the
remaining figure eight being either nonconstant or a ghost eight). We cancel these boundary
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components again by introducing Morse flow lines on L0 1 x M1 L 12 , whose length can now
vary individually. However, since squashed eights appear between the base quilt and figure
eights, the length of these Morse edges has to be accounted for in the condition of figure
eights all being at the same "Morse distance" from the base quilt. So the bubble hierarchy
indicated in Figure 1-2 yields a construction of the extended moduli space (more precisely
its part on which 6 E [-0c, 0]): It consists of Morse bubble trees over quilts of strip
width zero that are organized into colored metric ribbon trees (see [MaWo, Def. 7.1]) as
follows:

" The root is represented by the base quilt in which the strip has been shrunk to width 0.

* Other vertices are represented by a pseudoholomorphic disk, squashed eight, figure eight,
or ghost eight. Figure eights and ghost eights are the colored vertices, of which there is
exactly one between each leaf and the root. The squashed eights are exactly the vertices
between the root and a colored vertex.

" Each edge is labeled by a "Morse length" in [0, oo], and the "Morse distance" between each
colored vertex and the base quilt (the sum of lengths of edges in between base quilt and
figure eight resp. ghost eight) is the same. We denote this "figure eight height" by -3 for
J E [-00,0].

" Each edge attached to a disk vertex is represented by a generalized Morse trajectory on

L0 1 resp. L 12 of the given length. Each edge between figure eights, squashed eights, and

the root is represented by a generalized Morse trajectory on Lo, xml L 12 of the given

length.

" Disks and squashed eights are constant only if the vertex has valence > 3. Figure eights

are constant only if the vertex has valence > 2. Ghost eights only appear as colored leaf

attached by a ghost edge to a squashed eight vertex of valence 2. The ghost vertex and

ghost edge carry no geometric information other than a length of the ghost edge in [0, 00].

o Later on we generalize these moduli spaces further to obtain algebraic coupling with the

Morse chain complexes on L0 1 and L 12 . For that purpose we allow "half-infinite edges"

which terminate at a leaf and are represented by generalized Morse trajectories in the

compactifications .G(x_, Lij) of unstable manifolds of critical points x.

Note that constant figure eights are stable from an isotropy point of view when their

vertex has valence > 2. The ghost eight leaves are forced by the fact from Remark 3.4.2

that the moduli space (resp. ambient polyfold) of figure eight quilts has a boundary stratum

on which all energy concentrates at the singularity, so that rescaling yields a squashed

eight bubble that is attached to a constant figure eight quilt, whose value can be varied
by changing the rescaling (that's what we denote by ghost eight). If the figure eight was

nonconstant, then the resulting boundary stratum of the moduli space of fixed tree type is

cancelled by the boundary stratum in which the Morse edge between a squashed eight and

a figure eight vertex is of length 0. Our setup including ghost eight leaves is equivalent to
requiring squashed eight vertices to have "Morse distance" from the base quilt less or equal
to the "figure eight height", and using the boundary strata resulting from equality to cancel
the above mentioned strata in which a figure eight vertex degenerates into a squashed eight.
From here we can note that any breaking of trajectories between squashed eights or figure
eights and the main component corresponds to Morse height -3 -+ oo and thus forces at
least one breaking between each figure eight vertex and the root. (Between ghost eights and
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Figure 3-2: A contribution to the differential on CF(Lo, (LO, oL 12, Zk 1>0 b ), L2). The two

subtrees above the Morse critical points contribute to bil and b 02 , respectively. The dashed

lines indicate the level structure of the colored metric ribbon tree. Additional half-infinite

edges are labeled with the Morse cochains boi or b12, indicating a formal sum of trees whose

half-infinite edges are Morse edges starting at the Morse critical points that represent the

cochains.

the root, this can be achieved by a broken Morse trajectory between a squashed eight and

the root, or by a ghost edge of length oo.) If there is just one breaking for each figure eight

(and for each ghost eight either the ghost edge is infinite or there is one breaking between

the squashed eight and quilt), then the result lies in the top boundary stratum, but any

additional breaking of an edge adds to the corner index individually.17

As in Remark 3.4.3, we expect to obtain an ambient polyfold (or M-polyfold if sphere bub-

bling can be a priori excluded) by replacing the pseudoholomorphic curves and quilts with

appropriate spaces of not necessarily pseudoholomorphic maps modulo reparametrization.

Making this rigorous will require a precise setup of pre-gluing constructions for squashed

eights and figure eights as M-polyfold charts from [BoWel, which will also make the pre-

dicted boundary stratification rigorous. Further steps in the program are the Fredholm

property of the Cauchy-Riemann operator, and formal setups for the construction of gluing-

coherent perturbations and orientations. However, we can already see that the boundary

stratification of this polyfold is - apart from strata of types (B1-4) on page 90 - induced

by the boundary structure of the compactified Morse trajectory spaces from [We4I. These

3 = -00 boundary components correspond to the boundary strata of the compactified space

of colored metric ribbon trees (given by allowing infinite edge length). Since stable trees

of this sort realize Stasheff's multiplihedra [MaWo, Thms. 1.1, 7.6], we expect to obtain

A,,-functor relations from this boundary component. More precisely, we expect to obtain

algebraic relations from the top boundary strata of the compactified strip-shrinking

moduli space with Morse bubble trees, which replace our previous list (B1-5) as fol-

lows:

17 1f there are N figure eight vertices, then this effect is analogous to the breaking of finite length Morse

trajectories in the N-fold Cartesian product of Lo, x m, L 12 : The first breaking has to happen simultaneously

in all components since their lengths are coupled; further breakings are independent since trajectories can

be constant in various components.
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(B1') quilted Floer trajectories for 3 = 1 which may include trees of disk bubbles with finite

length Morse edges;

(B2') once-broken quilted Floer trajectories for J E (0, 1) which may include trees of disk

bubbles with finite-length Morse edges;

(B2") once-broken quilted Floer trajectories can also appear for 3 E (-o0, 0), where they
consist of Floer trajectories of width 0 with a colored tree of figure eight height -3,
and may include further trees of disk bubbles with finite-length Morse edges;

(B3') quilted Floer trajectories with one disk bubble on a seam for 3 E (0, 1) are canceled
as boundary components, but new boundary components contain quilted Floer tra-
jectories for 3 E (0, 1) with trees of disk bubbles, in which one Morse edge is broken
once;

(B3") quilted Floer trajectories of width 0 with a single broken Morse edge can also appear
for 3 E (-oo, 0), i.e. in a colored tree of figure eight height -3 with the broken edge
occurring either above the figure eight height or in a tree of disk bubbles on another
seam;

(B4') quilted Floer trajectories for 3 = 0 may include trees of disk bubbles with finite length
Morse edges attached to seams that are not involved in the shrinking; but when the
width goes to zero in the presence of a tree of disk bubbles on L01 or L 12 , this is viewed
as constant figure eight to which this tree is attached, and is canceled like other strata
of type (B5);

(B4") quilted Floer trajectories for 3 = 0 with squashed eight bubbles are canceled as bound-
ary components, but new boundary components contain quilted Floer trajectories of
width 0 with a colored tree of figure eight height -3 = oo, all of whose colored ver-
tices are ghost eights with infinite ghost edges; equivalently, these are quilted Floer
trajectories for J = 0 with trees of squashed eights and finite Morse edges attached to
the shrunk seam;

(B5') quilted Floer trajectories for 3 = 0 with figure eight bubbles are canceled as boundary
component, but new boundary components contain quilted Floer trajectories of width
0 with a colored tree of figure eight height -3 = oo, that is between each figure eight
or ghost eight and main quilt there is exactly one infinite edge - either an infinite
ghost edge or a once-broken Morse trajectory (of which there is at least one, otherwise
this component is listed under (B4")) - and all other edges have finite length.

An example of a boundary point of type (B5') is given in Figure 3-2, where the dashed
lines indicate the level structure of the colored metric ribbon tree resulting from strip shrink-
ing: In the first level above the root quilt, all vertices are represented by squashed eights,
whereas in the third level the vertices are represented by disk bubbles with boundary on
LO, or L 12 . The second level provides the division since between each leaf and the root
there is exactly one vertex represented by a figure eight - though we did not graphically
represent the ghost eight vertices above the two squashed eight leaves on the left subtree.
The figure eight height of this tree is oo, reflected by at least one broken trajectory below
each figure eight - in particular, the graphically unrepresented ghost edges between the
squashed eight leaves and ghost figure eight vertices have length oo. The corner index is
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1 since there is exactly one breaking for each figure eight (resp. infinite edge for the ghost
eights). A similar colored tree of corner index 1 and figure eight height oc could be obtained
by giving the ghost edges above the squashed eight leaves finite lengths, but replacing either
both edges below the leaves with a broken trajectory, or having just one broken trajectory
at the edge which attaches both leaves to the root. However, we do not expect algebraic
contributions from the latter tree types: Geometrically, this would mean an isolated solution
on the boundary of the polyfold containing the moduli space of figure eights with outgoing
infinite Morse edge. In terms of our tree setup, such solutions aren't isolated since the length
of the finite ghost edge can be varied.

3.4.4 Floer homology isomorphism for general cleanly-immersed geomet-
ric composition

To generalize the isomorphism between quilted Floer homologies (2.1) under monotone, em-
bedded composition to general symplectic manifolds and Lagrangians and cleanly-immersed
composition L0 1 o L 12 , we analyzed in Section 3.4.1 the boundary strata of the polyfold
which provides an ambient space for a general compactified moduli space of quilted Floer
trajectories with varying width. The cobordism argument outlined in Remark 3.4.1 then
predicts an algebraic identity from summing over the boundary strata (B1-5) on page 90
resp. the refined boundary strata on page 94.

We expect the strata of types (B2), (B3) resp. (B2'), (B2"), (B3'), (B3") to appear only
at finitely many singular values of strip width 3 E (0, 1) or figure eight height 6 E (-oo, 0)
and to provide a chain homotopy equivalence between two Floer complexes: The first is
in both frameworks defined from the regular strip width 6 = 1, with the differential given
by counting solutions of type (Bi) resp. (Bi'). In the Morse framework, the second Floer
complex is defined from counting regular solutions of types (B4'), (B4"), and (B5'). In the
framework of page 90, the second complex should arise from solutions of types (B4) and
(B5) at 3 = 0, though it is unclear in what sense the latter might be made regular.

Up to such a chain homotopy equivalence, or assuming there are no singular values in

(-o, 1), we obtain the following identity relating the Floer differential yU,= 1) arising from

strip width 6 = 1 and the Floer differential 1 (_0) arising from strip width J = 0 with

generalized seam condition in L0 1 xM, L 12 : 18

y l) (-) = 1 p 0 (-I b02, . .. , b02). (3.36)
k>O

In the Morse framework, the moduli spaces defining the differentials piy= 1) and p 11 both

allow for trees of disks with finite Morse edges (including trees of squashed eights attached
to the seam obtained from strip shrinking). Figure eight bubbling is in both frameworks

encoded in the higher operations y 01 for k > 1. In the framework of (B5), this operation
should be defined from quilted Floer trajectories of middle strip width 0 with k incoming
marked points on the seam labeled by the immersion L0 1 o L12 , and b 02 should be a chain

18 Note that the moduli spaces with generalized seam condition involve a choice of lift of the seam values
to LO, xM, L12. So in case LO, o L 12 is a smooth Lagrangian correspondence albeit multiply covered by
Loi X M1 L12, this Floer complex is generated by lifts of intersection points. The differential pl"_o) only

counts Floer trajectories with smooth seam lift, whereas the terms p lk for k > 1 will allow for jumps in
the seam lift.
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obtained from a moduli space of figure eight bubbles by evaluation at the singularity. In the
absence of an approach for making the latter rigorous, we will construct the operations 19

(6 0 ) : CF(Lo, L01 o L12, L2 ) 0 CM(Loi x 1 L12) k -- CF(Lo, Lo1 o L 12 , L 2)

in the Morse framework from quilted Floer trajectories of strip width 0 with k incoming
Morse edges (represented by half-infinite trajectories in Loi x M 1 L 12 starting at a Morse

critical point) attached (possibly via trees of squashed eights and finite Morse edges) to the

middle seam. Then (B5') indicates that the Morse cochain

b0 2 E CF(Loi o L 12 , Loi o L 12 ) := CM(Loi XM 1 L 12) (3.37)

should be defined by counting regular isolated figure eight bubble trees as follows:

" Exactly one vertex is represented by a figure eight, and this vertex lies between every leaf
and the root. All vertices between leaves and the figure eight are represented by pseudo-
holomorphic disks, and all vertices between the figure eight and the root are represented
by squashed eights.

" Each edge attached to a disk vertex is represented by a finite Morse trajectory on Loi
resp. L 12 , and all other edges are represented by a finite Morse trajectory on L0 1 xm1 L 12 .

" The root vertex is represented by a figure eight or squashed eight with a marked point at
the singularity, to which an outgoing Morse edge is attached, i.e. a half-infinite trajectory

in L0 1 xM1 L 12 ending at a Morse critical point.

* Disks and squashed eights are constant only if the vertex has valence > 3. Figure eights

are constant only if the vertex has valence > 2.

Once such operations are defined, (3.36) identifies (up to chain homotopy equivalence) the
quilted Floer chain complexes

CF(Lo,Loi,L12,L 2) ~ CF(Lo,(Lo1 oL12,bo 2),L 2),

1where the differential on the left hand side is p,_1 and the differential on the right hand

side is the twisted differential ab02 = Zkto p( =o)( -| b02, .:. . , b02 ). Here the right hand side
treats Lol o L 12 as an immersion. If this is an embedding then the right hand side is the Floer
chain complex of the Lagrangian L0 1 o L 12 C M- x M2 twisted by the Morse cochain b0 2 . An

example of a contribution to the twisted Floer differential is Figure 3-2 without the middle
tree. This result is meaningful if the cyclic Lagrangian correspondence Lo, Loi, L 12 , L 2 is
naturally unobstructed in the sense that the differential & = p,_ satisfies 02 = 0. In

particular, it asserts that the twisted differential on the right hand side satisfies (92 = 0.
To understand more intrinsically why the twisted differential squares to zero, we need to go

into the A,, algebra.

Remark on A,, terminology: In the upcoming sections, we will denote by (pdl0)d> 0 ,
(Pd resp (y2d> the curved Ao-algebras associated to L0 1 , L 12 , resp. L0 1 o L12,
constructed on Morse chain complexes as outlined in Remark 3.4.3. If working with the

19 When the composition Lo, o L1 2 is embedded, we expect pl I) to agree with the A,,-structure map

CF(Loi o L12, Lo x L 2) 9 CF(Loi o L 12, Lo, o L 12 )Ok - CF(Loi 0 L 12 , Lo x L2) on Fuk(M- x M2).
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Figure 3-3: The expected boundary strata of a figure eight moduli space explain various

algebraic identities in Remark 3.4.4. If contributions from disk bubbles on Loi, L 12 can be

excluded (i.e. [to = p2 = 0) then the element b02 E CM(Loi x M1 L 12 ) should solve the

Maurer-Cartan equation for Lo, o L12 . For monotone, embedded composition, the figure

eight bubbles can be excluded to explain the identity nLoi + nL12 = nLo1oL12 between disk

counts.

latter, we will usually assume that Lo1 o L 12 is embedded, though there are extensions to

multiply covered and even cleanly immersed cases, as outlined in Remark 1.2.2.

Moreover, we will call b E CF(L, L) a bounding cochain for the Lagrangian L if it sat-

isfies the Maurer-Cartan equation Zd>0 pd(b, ... , b) = 0. When a quilted Floer differential

is twisted by bounding cochains for each Lagrangian correspondence, it will square to zero.

It is however also possible that twisting with more general cochains yields a chain complex.

Remark 3.4.4. The vanishing 0b2
02  0 generally follows from the identification of differentials

S&=ab02 in (3.36) together with the assumption &2 = 0. In more special cases we expect this

to be a consequence of b0 2 E CF(Loi oL12 , Loi o L 12 ) being a bounding cochain, i.e. satisfying

the Maurer-Cartan equation El 0 Pd2 (b 0 2 , ... , b0 2 ) = 0. (Here we assume Loi o L 12 to be an

embedded composition, though this remark should extend to the cleanly-immersed setting.)

This should follow from a cobordism argument illustrated in Figure 3.4.4: Consider the

1-dimensional moduli space of figure eight quilts between Lo, and L 12 , with a half-infinite

outgoing Morse trajectory on Lo, xm1 L 12 attached to its singularity. Extrapolating from

the boundary analysis in 3.4.2-3.4.3, we expect the 0-dimensional boundary strata to come

in two types:

" Some strata are given by squashed eights with seam in Lo, x m, L 12 , with one outgoing

half-infinite Morse trajectory on Loi x Ml L 12 attached to the singularity, and d > 0

figure eight bubbles attached to the seam via once-broken Morse trajectories on Loi.

The formal sum over the limiting critical points of the outgoing trajectories of such

isolated solutions yields p02 (bo 2 , ... , bo2 ).

" The remaining strata are given by figure eights with one outgoing half-infinite Morse

trajectory attached to the singularity, and a disk bubble mapping to

(M x Mk+1, Lk(k+1)) for either k = 0 or k = 1 attached to the Lk(k+l)-seam via

a once-broken Morse trajectory on Lk(k+1). The formal sum over the limiting critical

points of such isolated solutions yields C2( pol) resp. C 2(p 2) when k = 0 resp. k = 1,

where C2 is the curved A,,-bifunctor whose blueprint we sketched in Chapter 1.
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As boundaries of a 1-dimensional moduli space, the algebraic contributions of these boundary
strata should sum to zero. (In fact, this equation is also a formal consequence of the curved
Aoo-bifunctor relations satisfied by C2.) In the special case [ = t 2 = 0 (i.e. when there

are no disk bubbles on Loi or L 12 , or their contributions cancel) this yields the expected
Maurer-Cartan equation Zd>o p 2 (bo2 , ... , bo2 ) = 0.

This also illuminates an identity between disk counts noted in [WeWol, Remark 2.2.31:
Working with monotone orientable Lagrangians and embedded composition, one expects
both differentials &6 := p(J>o) and 6o := pbL(c=O) to square to multiples of the identity,
02 = w6id resp. a2 = woid, with w6 = nLo + nLo1 +nL 12 +nL 2 resp- wo = fL0 -I fL0 1 oL 1 2 +fL2

given by sums of counts rL of Maslov index 2 disks through a generic point on the Lagrangian
L. Arguing by strip shrinking identifying the differentials, [WeWol concluded w6 = wo and
hence nLoi + nL12 = nLo1 oL12 . This identity can now also be seen directly from the above
cobordism argument: Monotonicity excludes nonconstant figure eight bubbles, which reduces
the boundary strata on the right hand side of Figure 3.4.4 to the first and last two types,
corresponding to nLioL 12 and nLI, nL1 2 , respectively.

Next, we relax the unobstructedness to the assumption that the Lagrangians
Lo, Loi, L 1 2 , L 2 are equipped with cochains b = (bo, boi, b12 , b2 ) so that the twisted differen-
tial ab (which arises from adding marked points labeled with bo, boi, b 12, resp. b2 to the J = 1
quilted Floer trajectories) satisfies (2 = 0. Then we may add these cochains to the previ-
ous strip-shrinking moduli space as incoming Morse edges whose starting points represent
bo, bol, b1 2, resp. b2 and whose endpoints correspond to marked points on the seams labeled
Lo, Loi, L 12 , resp. L 2 anywhere on the quilted Floer trajectory or the attached bubble trees.
Then an analogous cobordism argument yields a chain homotopy equivalence

CF ((Lo, bo), (Loi, bol), (L12, b2), (L2, b2)) ~- CF ((Lo, bo), (Loi oL12, Ekebo) (L2 b2)),

where the Morse cochains b t E CF(Loi a L 12 , Loi o L 12 ) are obtained by adding incoming
Morse edges to the figure eight bubble trees that define b 2  : b 0 . M re

More ege tothefiureeiht ubbe ree tat efie 02 : 02 . ore precisely, we
attach k incoming Morse edges representing b12 E CF(L 12 , L1 2 ) to the L 12 seams anywhere
on the bubble tree, and we attach e incoming Morse edges representing bol to the Lo, seams.
Figure 3-2 provides an example of figure eight contributions to the twisted Floer differential
for the composed Lagrangian correspondences on the right-hand side of the equivalence.

This demonstrates, as advertised in the introduction, that the isomorphism of quilted
Floer homologies (2.1) should generalize in a straightforward fashion to the nonmonotone,
cleanly-immersed case as isomorphism of quilted Floer homologies with twisted differentials,

HF(.. ., (Loi, bol), (L12, b12 ), .. .) ce HF(. . ., (Lo, o L 12, 8(boi, b12 )), . .),

in which the cochain 8(bo1 , b12) for the composed Lagrangian is obtained from moduli spaces
of figure eight bubble trees with inputs bol and b12. In particular, the cochain 8(0, 0) = b02
in (3.37) for vanishing inputs is a generally nonzero count of figure eight bubbles.

Remark 3.4.5. The cobordism argument in Remark 3.4.4 can be adapated to the situation
that Loi, L 12 are equipped with bounding cochains bol E CF(Loi, Loi), b12 E CF(L12 , L 12 ):
This time, for every k, e > 0 we consider 1-dimensional moduli spaces of figure eight quilts
with one outgoing half-infinite Morse trajectory attached to the singularity, and k resp.
e incoming half-infinite Morse trajectories attached to the Loi-seam resp. the L 12 -seam.
The algebraic contributions of the boundary strata with incoming Morse critical points
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representing bol and b1 2 should sum to zero. Summing over all k, f > 0, we obtain the
expected equation

S ( d2 (bkdIed,. .. ,
k,e>o kl+---+kd=k,

SC2 (b12, ..., b12  I bol..., bo, p, (bo,.. ., boi), bol ... , bo)
k,~o a~dtk k-a-d a

+ S C (b1 2,... bl21 /4 2 (bl2 , .. .,b 12), b12, ..,b12 I bol ... , bo).
k,eO a+d~e t-a-d a k

The right side vanishes, after a reorganization, by the Maurer-Cartan equations for boi and
b12 . Then a reorganization of the left side yields the expected Maurer-Cartan equation for
Loi o L12,

P02 (Ek' >ObO2,.. Ek,t ob02 =
doO
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Appendix A

Removal of singularity for cleanly
intersecting Lagrangians

In this appendix, we sketch a proof of removal of singularity for a holomorphic curve satis-
fying a generalized Lagrangian boundary condition in an immersed Lagrangian with locally-
clean self-intersection. We emphasize that this is not a new result, see e.g. [Abb, CiEkLa,
Fr, IvSh, Sc]. We have included the following proposition in this paper because our methods

allow us to give a short proof.
This removal of singularity will be stated for maps u with Lagrangian boundary condi-

tions lifting to paths -y, y':

u: (B(0, 1) nfH)l){0} -+ M, y': (-1, 0) -+ L', -Y: (0, 1) -+ L, (A.1)

(p' (-y'(s')) = u(s', 0), W(-y(s)) = u(s, 0) V s' E (-1, 0), s E (0, 1),

&sU + J(s, t, u)Otu = 0, E(u) := fu*w < o0,

where (M, w) is a closed symplectic manifold, p: L -+ M and W': L' -+ M' are Lagrangian

immersions with L, L' closed, and J is an almost complex structure J: B(0, 1) n H -+
J(M, w). We will assume that W(L), W'(L') intersect locally cleanly, which means that there

are finite covers L = U= 1 Uj, L' = U 1 Uj such that W resp. p' restrict to an embedding

on each Ui resp. Uj, and W (Ui), W'(Uj) intersect cleanly for all i, j.

Proposition A..6. If u, yy' satisfy (A.1), then u extends continuously to 0.

Sketch proof of Proposition A.0.6. The first part of the proof of [AbbHo, Theorem 7.3.1]
yields a uniform gradient bound on u in cylindrical coordinates near the puncture. We must

make a minor modification due to the fact that the Lagrangians defining our boundary

conditions are immersed, not embedded: Recall that the uniform gradient bound in cylin-

drical coordinates is established in [AbbHo] by assuming that there is a sequence ((sk, tk)) C

(-00,0] x [0, 1] so that limk+,, Idu(sk, tk)I = oo, which necessarily has sk -+ -00. Rescaling
at the points (Sk, tk) yields a sequence of maps that converges in Cl c to a nonconstant map
on either R 2 or H, which contradicts the finiteness of the energy. To adapt this proof to

our situation, let J be a Lebesgue number for L = Uk= 1 U and L' = Ul=1 Uj. That is, if

A is a subset of L (resp. of L') with diam A ; J, then A c Uj (resp. A c Uj) for some

i. Now rescale at the points (8k, tk) as in [AbbHo], but restrict the resulting maps to the

intersection of B(0, !6) with their domain. The gradient bound on these rescaled maps and

our choice of 6 allows us to pass to a subsequence so that for some i, j, all the rescaled maps
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have boundary values in 7r(Ui) or 7r'(U). A further subsequence converges in C', so we get
a contradiction and therefore a uniform bound on |Vul in cylindrical coordinates.

The analogue of Lemma 2.1.3 holds in this setting; the proof is the same as for Lemma 2.1.3
but simpler. As in the first paragraph, some care must be taken with the immersed La-
grangians.

The analogue of Lemma 2.1.8 holds in this setting, though the proof must be modified.
Specifically, the domains UO, U1 , U2 , U3 used in the proof of that lemma must be replaced by
the domain B(O, 1) n H.

A slight modification of the proof of Theorem 2.1.2 establishes Proposition A..6. D
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Appendix B

Examples of figure eight bubbles (in
collaboration with Felix Schmischke)

In this section we provide some examples of figure eight bubbles. Our first, previously
known, examples show that classical holomorphic discs and holomorphic strips give rise to
figure eight bubbles, which naturally appear in the strip shrinking limit of Theorem 3.3.1 in
case M, or both of M0 , M2 are points. Of course, in that case, strip shrinking is not needed
to identify the respective moduli spaces.

Example B.O.7. Let Mo and M 2 each be a point, let M1 be any symplectic manifold that is
either compact or satisfies the boundedness assumptions of Remark 3.3.4, and let L, L' C Mi
be any two compact Lagrangian submanifolds. Then a Ji-holomorphic strip ui: [-1,1] x
R -+ M1 with boundary conditions

ui(-1, t) E L, ui(lt) E L' Vt E R

gives rise to a figure eight bubble in the sense of Definition 3.2.5 by setting uo := const =: u2.
Such bubbles are generally sheet-switching, unless ul is a self-connecting Floer trajectory.

Here the correspondences {pt} x L and L' x.{pt} have immersed composition if and only
if the Lagrangians intersect transversely in M1 . This bubble type in fact appears in the strip
shrinking that relates the quilted Floer trajectories for ({pt}, {pt} x L, L' x {pt}, {pt}) and
({pt}, ({pt} x L) o (L' x {pt}), {pt}). The first are easily identified with the Floer strips
for (L, L'). The latter are pairs of strips in Mo and M2 , hence there only is one constant
trajectory. All nontrivial Floer trajectories result in a single figure eight bubble on this
constant trajectory. This demonstrates that figure eight bubbling must be reckoned with,
even when only considering isolated Floer trajectories.

All following next figure eight bubbles will be constructed as tuples of maps from the
following Riemann surfaces with boundary:

Eo = {w E C I Jw + 11 1}{0}, E2 = {w E C I Jw - 11 1}{O},

El = {w E C I |w + 11 1,|w - 1}{O}.

Each of these surfaces is equipped with the complex structure induced by the inclusion into

C, and we will ensure that the maps on Ei extend smoothly to oo E CP1 r C U {oo}.
The coincidence of boundary components in C then induces seams between the surfaces

and thus defines a quilted surface with total space CPIR,{O}. It can be identified, by a
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biholomorphism CP 1'if{0} a C-{oo}, with the quilted surface underlying the figure eight
bubbles in Definition 3.2.5.

Example B.0.8. Let Mi be a point, let Mo, M2 be any two symplectic manifolds that are
either compact or satisfy our boundedness assumptions, and let L C MO and L' c M2

be any two compact Lagrangian submanifolds. Given two punctured holomorphic discs
uo: Eo -4 MO, u2: E2 -+ M2 with uo(&Eo) c L, u2 (&E2 ) c L', we obtain a figure eight by
setting u1 := const.

Here the correspondences L x {pt} and {pt} x L' always have embedded composition
L x L' C MO x M2 . The singularity in these figure eight bubble is already removed by our
construction, and for other bubbles of this type can be removed by the standard result for
punctured disks, yielding a pair of disk bubbles on L and L'. These could occur in the strip
shrinking that, for further Lagrangians LO c MO and L 2 c M 2 , relates the quilted Floer
trajectories for (Lo, L x {pt}, {pt} x L', L 2 ) and (Lo, L x L', L2 ). However, these moduli
spaces also have an elementary identification, so this type of figure eight bubbling just is an
expression of the fact that the moduli space has boundary components where disk bubbles
appear at the same R coordinate on different seams. Actual boundary, rather than corners,
correspond to one of the disk bubbles being constant.

For the final, more nontrivial example, CP' will denote the complex projective space
equipped with its standard complex structure and with Kihler form wCpn associated to the
Fubini-Study metric.

Example B.0.9. Consider the Sl-action on CP3 given by u * [zo : zI : z31 := [uzo : uzi
U-1Z2 : 1u z 3] for any u E {z E C : Iz = 11 ' S1 . This is a Hamiltonian Sl-action with
Hamiltionian

Z2 1 Izol2 + Izi| 2 - 1Z 12 _ JZ312
2z Z)12 + zil 2 + Iz212 + z3 12

Symplectic reduction at regular values generally gives rise to Lagrangian correspondences,
see [WeWo4, Example 2.0.2(e)]. In this case, reduction at 0 yields a Lagrangian correspon-
dence between MO = M2 := CP3 and M, := CP1 x CP1, equipped with the symplectic
structure w := wcpl ECP. Indeed, the level set of the moment map is

A-1(0) = {Izo : Z : Z2 : Z3] E CP3 Izo1 2 + Izil 2 = 1z212 +Z 121

and the quotient map 7r: p-1(0) -+ Mo//S1 - CP1 x CP1 is given by [zo : ZI : Z2 : z 3] -

([zo : z], [z 2 : z3 ]). With the inclusion t: p-'(0) - CP3, this gives rise to Lagrangian sub-
manifolds LO, := (t x 7r)(p- 1 (0)) C Mo x Mi and L 12 := (7r x t)(Q- 1 (0)) c M- x M2 .
Both are diffeomorphic to S3 x S2, hence simply connected; therefore LO, and L 12 are mono-
tone, with the same monotonicity constant as M- x M, resp. M7~ x M2 . The geometric
composition is

Loi o L 12 = {(Zo, Z2)E (0) x p~ 1(0) 1 7r(Zo) = 7r(Z2)} C (Cp3 X Cp3

and is embedded since ir is a surjection and determines 7r(Zo) = wr(Z2 ) E M1 uniquely.

Now a general idea for constructing figure eight bubbles applies to this case. The holo-
morphic map C -+ C4 , w '-+ (w - 1, w + 1, w 2 - 1, 1) induces holomorphic maps to both
CP1 x CP1 and CP3 , and on the seams {Iw i1 = 1} C C the latter takes values in p--1 (0).
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Hence the following triple (Uo, U1, u2) defines a nonconstant figure eight bubble,

UO: EO Cp3, I W_ [W - 1: W+1 : w2_1:1

ul: E -+0CP1 x CP1, WF+ ([w - 1: w +1], [w 2 1 :1),
U2: E2 -+ Cp3, WH+ [w-1:w+1:w 2 1:1].

Note here that ui extends continuously to oo E CPI1 since [w - 1 w + 1] -+ [1 1] and

[w 2 - 1 : 1] -+ [1 : 0] as w -+ oo. Moreover, all maps extend smoothly to 0 E C - an
example of a removable singularity.

This figure eight bubble could occur in the strip shrinking that, for further Lagrangians
LO, L 2 C CP3 relates the quilted Floer trajectories for (Lo, Loi, L 12 , L2 ) and (Lo, Lo, o
L 12 , L 2 ). In particular, if both Lo, L 2 are monotone and so-called "transverse lifts" of La-
grangians eO,f 2 C CP1 x CP1, i.e. Li rh p' (0) and 7r: Li n p- 1 (0) -+ i is bijective, then
the above figure eight bubble could be an obstruction to the identification of the Floer ho-
mologies HF(fo,f 2 ) L _ HF(Lo, Loi, L12 , L2 ) in CP1 x CP' and HF(Lo x L 2 , Loi o L1 2 ) in

(CP3) - X CP3 .
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